Source code pulled from OpenBSD for OpenNTPD. The place to contribute to this code is via the OpenBSD CVS tree.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

450 lines
9.9 KiB

  1. /* $OpenBSD: control.c,v 1.15 2019/05/28 06:49:46 otto Exp $ */
  2. /*
  3. * Copyright (c) 2003, 2004 Henning Brauer <henning@openbsd.org>
  4. * Copyright (c) 2012 Mike Miller <mmiller@mgm51.com>
  5. *
  6. * Permission to use, copy, modify, and distribute this software for any
  7. * purpose with or without fee is hereby granted, provided that the above
  8. * copyright notice and this permission notice appear in all copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include <sys/types.h>
  19. #include <sys/stat.h>
  20. #include <sys/socket.h>
  21. #include <sys/un.h>
  22. #include <errno.h>
  23. #include <math.h>
  24. #include <stdio.h>
  25. #include <stdlib.h>
  26. #include <string.h>
  27. #include <unistd.h>
  28. #include <fcntl.h>
  29. #include <err.h>
  30. #include "ntpd.h"
  31. #define CONTROL_BACKLOG 5
  32. #define square(x) ((x) * (x))
  33. int
  34. control_check(char *path)
  35. {
  36. struct sockaddr_un sun;
  37. int fd;
  38. bzero(&sun, sizeof(sun));
  39. sun.sun_family = AF_UNIX;
  40. strlcpy(sun.sun_path, path, sizeof(sun.sun_path));
  41. if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) == -1) {
  42. log_warn("control_check: socket check");
  43. return (-1);
  44. }
  45. if (connect(fd, (struct sockaddr *)&sun, sizeof(sun)) == 0) {
  46. log_warnx("control_check: socket in use");
  47. close(fd);
  48. return (-1);
  49. }
  50. close(fd);
  51. return (0);
  52. }
  53. int
  54. control_init(char *path)
  55. {
  56. struct sockaddr_un sa;
  57. int fd;
  58. mode_t old_umask;
  59. if ((fd = socket(AF_UNIX, SOCK_STREAM | SOCK_CLOEXEC, 0)) == -1) {
  60. log_warn("control_init: socket");
  61. return (-1);
  62. }
  63. memset(&sa, 0, sizeof(sa));
  64. sa.sun_family = AF_UNIX;
  65. if (strlcpy(sa.sun_path, path, sizeof(sa.sun_path)) >=
  66. sizeof(sa.sun_path))
  67. errx(1, "ctl socket name too long");
  68. if (unlink(path) == -1)
  69. if (errno != ENOENT) {
  70. log_warn("control_init: unlink %s", path);
  71. close(fd);
  72. return (-1);
  73. }
  74. old_umask = umask(S_IXUSR|S_IXGRP|S_IWOTH|S_IROTH|S_IXOTH);
  75. if (bind(fd, (struct sockaddr *)&sa, sizeof(sa)) == -1) {
  76. log_warn("control_init: bind: %s", path);
  77. close(fd);
  78. umask(old_umask);
  79. return (-1);
  80. }
  81. umask(old_umask);
  82. if (chmod(path, S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP) == -1) {
  83. log_warn("control_init: chmod");
  84. close(fd);
  85. (void)unlink(path);
  86. return (-1);
  87. }
  88. session_socket_nonblockmode(fd);
  89. return (fd);
  90. }
  91. int
  92. control_listen(int fd)
  93. {
  94. if (fd != -1 && listen(fd, CONTROL_BACKLOG) == -1) {
  95. log_warn("control_listen: listen");
  96. return (-1);
  97. }
  98. return (0);
  99. }
  100. void
  101. control_shutdown(int fd)
  102. {
  103. close(fd);
  104. }
  105. int
  106. control_accept(int listenfd)
  107. {
  108. int connfd;
  109. socklen_t len;
  110. struct sockaddr_un sa;
  111. struct ctl_conn *ctl_conn;
  112. len = sizeof(sa);
  113. if ((connfd = accept(listenfd,
  114. (struct sockaddr *)&sa, &len)) == -1) {
  115. if (errno != EWOULDBLOCK && errno != EINTR)
  116. log_warn("control_accept: accept");
  117. return (0);
  118. }
  119. session_socket_nonblockmode(connfd);
  120. if ((ctl_conn = calloc(1, sizeof(struct ctl_conn))) == NULL) {
  121. log_warn("control_accept");
  122. close(connfd);
  123. return (0);
  124. }
  125. imsg_init(&ctl_conn->ibuf, connfd);
  126. TAILQ_INSERT_TAIL(&ctl_conns, ctl_conn, entry);
  127. return (1);
  128. }
  129. struct ctl_conn *
  130. control_connbyfd(int fd)
  131. {
  132. struct ctl_conn *c;
  133. TAILQ_FOREACH(c, &ctl_conns, entry) {
  134. if (c->ibuf.fd == fd)
  135. break;
  136. }
  137. return (c);
  138. }
  139. int
  140. control_close(int fd)
  141. {
  142. struct ctl_conn *c;
  143. if ((c = control_connbyfd(fd)) == NULL) {
  144. log_warn("control_close: fd %d: not found", fd);
  145. return (0);
  146. }
  147. msgbuf_clear(&c->ibuf.w);
  148. TAILQ_REMOVE(&ctl_conns, c, entry);
  149. close(c->ibuf.fd);
  150. free(c);
  151. return (1);
  152. }
  153. int
  154. control_dispatch_msg(struct pollfd *pfd, u_int *ctl_cnt)
  155. {
  156. struct imsg imsg;
  157. struct ctl_conn *c;
  158. struct ntp_peer *p;
  159. struct ntp_sensor *s;
  160. struct ctl_show_status c_status;
  161. struct ctl_show_peer c_peer;
  162. struct ctl_show_sensor c_sensor;
  163. int cnt;
  164. ssize_t n;
  165. if ((c = control_connbyfd(pfd->fd)) == NULL) {
  166. log_warn("control_dispatch_msg: fd %d: not found", pfd->fd);
  167. return (0);
  168. }
  169. if (pfd->revents & POLLOUT)
  170. if (msgbuf_write(&c->ibuf.w) <= 0 && errno != EAGAIN) {
  171. *ctl_cnt -= control_close(pfd->fd);
  172. return (1);
  173. }
  174. if (!(pfd->revents & POLLIN))
  175. return (0);
  176. if (((n = imsg_read(&c->ibuf)) == -1 && errno != EAGAIN) || n == 0) {
  177. *ctl_cnt -= control_close(pfd->fd);
  178. return (1);
  179. }
  180. for (;;) {
  181. if ((n = imsg_get(&c->ibuf, &imsg)) == -1) {
  182. *ctl_cnt -= control_close(pfd->fd);
  183. return (1);
  184. }
  185. if (n == 0)
  186. break;
  187. switch (imsg.hdr.type) {
  188. case IMSG_CTL_SHOW_STATUS:
  189. build_show_status(&c_status);
  190. imsg_compose(&c->ibuf, IMSG_CTL_SHOW_STATUS, 0, 0, -1,
  191. &c_status, sizeof (c_status));
  192. break;
  193. case IMSG_CTL_SHOW_PEERS:
  194. cnt = 0;
  195. TAILQ_FOREACH(p, &conf->ntp_peers, entry) {
  196. build_show_peer(&c_peer, p);
  197. imsg_compose(&c->ibuf, IMSG_CTL_SHOW_PEERS,
  198. 0, 0, -1, &c_peer, sizeof(c_peer));
  199. cnt++;
  200. }
  201. imsg_compose(&c->ibuf, IMSG_CTL_SHOW_PEERS_END,
  202. 0, 0, -1, &cnt, sizeof(cnt));
  203. break;
  204. case IMSG_CTL_SHOW_SENSORS:
  205. cnt = 0;
  206. TAILQ_FOREACH(s, &conf->ntp_sensors, entry) {
  207. build_show_sensor(&c_sensor, s);
  208. imsg_compose(&c->ibuf, IMSG_CTL_SHOW_SENSORS,
  209. 0, 0, -1, &c_sensor, sizeof(c_sensor));
  210. cnt++;
  211. }
  212. imsg_compose(&c->ibuf, IMSG_CTL_SHOW_SENSORS_END,
  213. 0, 0, -1, &cnt, sizeof(cnt));
  214. break;
  215. case IMSG_CTL_SHOW_ALL:
  216. build_show_status(&c_status);
  217. imsg_compose(&c->ibuf, IMSG_CTL_SHOW_STATUS, 0, 0, -1,
  218. &c_status, sizeof (c_status));
  219. cnt = 0;
  220. TAILQ_FOREACH(p, &conf->ntp_peers, entry) {
  221. build_show_peer(&c_peer, p);
  222. imsg_compose(&c->ibuf, IMSG_CTL_SHOW_PEERS,
  223. 0, 0, -1, &c_peer, sizeof(c_peer));
  224. cnt++;
  225. }
  226. imsg_compose(&c->ibuf, IMSG_CTL_SHOW_PEERS_END,
  227. 0, 0, -1, &cnt, sizeof(cnt));
  228. cnt = 0;
  229. TAILQ_FOREACH(s, &conf->ntp_sensors, entry) {
  230. build_show_sensor(&c_sensor, s);
  231. imsg_compose(&c->ibuf, IMSG_CTL_SHOW_SENSORS,
  232. 0, 0, -1, &c_sensor, sizeof(c_sensor));
  233. cnt++;
  234. }
  235. imsg_compose(&c->ibuf, IMSG_CTL_SHOW_SENSORS_END,
  236. 0, 0, -1, &cnt, sizeof(cnt));
  237. imsg_compose(&c->ibuf, IMSG_CTL_SHOW_ALL_END,
  238. 0, 0, -1, NULL, 0);
  239. break;
  240. default:
  241. break;
  242. }
  243. imsg_free(&imsg);
  244. }
  245. return (0);
  246. }
  247. void
  248. session_socket_nonblockmode(int fd)
  249. {
  250. int flags;
  251. if ((flags = fcntl(fd, F_GETFL)) == -1)
  252. fatal("fcntl F_GETFL");
  253. flags |= O_NONBLOCK;
  254. if ((flags = fcntl(fd, F_SETFL, flags)) == -1)
  255. fatal("fcntl F_SETFL");
  256. }
  257. void
  258. build_show_status(struct ctl_show_status *cs)
  259. {
  260. struct ntp_peer *p;
  261. struct ntp_sensor *s;
  262. cs->peercnt = cs->valid_peers = 0;
  263. cs->sensorcnt = cs->valid_sensors = 0;
  264. TAILQ_FOREACH(p, &conf->ntp_peers, entry) {
  265. cs->peercnt++;
  266. if (p->trustlevel >= TRUSTLEVEL_BADPEER)
  267. cs->valid_peers++;
  268. }
  269. TAILQ_FOREACH(s, &conf->ntp_sensors, entry) {
  270. cs->sensorcnt++;
  271. if (s->update.good)
  272. cs->valid_sensors++;
  273. }
  274. cs->synced = conf->status.synced;
  275. cs->stratum = conf->status.stratum;
  276. cs->clock_offset = getoffset() * 1000.0;
  277. cs->constraint_median = conf->constraint_median;
  278. cs->constraint_last = conf->constraint_last;
  279. cs->constraint_errors = conf->constraint_errors;
  280. }
  281. void
  282. build_show_peer(struct ctl_show_peer *cp, struct ntp_peer *p)
  283. {
  284. const char *a = "not resolved";
  285. const char *pool = "", *addr_head_name = "";
  286. const char *auth = "";
  287. u_int8_t shift, best, validdelaycnt, jittercnt;
  288. time_t now;
  289. now = getmonotime();
  290. if (p->addr) {
  291. a = log_sockaddr((struct sockaddr *)&p->addr->ss);
  292. if (p->addr->notauth)
  293. auth = " (non-dnssec lookup)";
  294. }
  295. if (p->addr_head.pool)
  296. pool = "from pool ";
  297. if (0 != strcmp(a, p->addr_head.name))
  298. addr_head_name = p->addr_head.name;
  299. snprintf(cp->peer_desc, sizeof(cp->peer_desc),
  300. "%s %s%s%s", a, pool, addr_head_name, auth);
  301. validdelaycnt = best = 0;
  302. cp->offset = cp->delay = 0.0;
  303. for (shift = 0; shift < OFFSET_ARRAY_SIZE; shift++) {
  304. if (p->reply[shift].delay > 0.0) {
  305. cp->offset += p->reply[shift].offset;
  306. cp->delay += p->reply[shift].delay;
  307. if (p->reply[shift].delay < p->reply[best].delay)
  308. best = shift;
  309. validdelaycnt++;
  310. }
  311. }
  312. if (validdelaycnt > 1) {
  313. cp->offset /= validdelaycnt;
  314. cp->delay /= validdelaycnt;
  315. }
  316. jittercnt = 0;
  317. cp->jitter = 0.0;
  318. for (shift = 0; shift < OFFSET_ARRAY_SIZE; shift++) {
  319. if (p->reply[shift].delay > 0.0 && shift != best) {
  320. cp->jitter += square(p->reply[shift].delay -
  321. p->reply[best].delay);
  322. jittercnt++;
  323. }
  324. }
  325. if (jittercnt > 1)
  326. cp->jitter /= jittercnt;
  327. cp->jitter = sqrt(cp->jitter);
  328. if (p->shift == 0)
  329. shift = OFFSET_ARRAY_SIZE - 1;
  330. else
  331. shift = p->shift - 1;
  332. if (conf->status.synced == 1 &&
  333. p->reply[shift].status.send_refid == conf->status.refid)
  334. cp->syncedto = 1;
  335. else
  336. cp->syncedto = 0;
  337. /* milliseconds to reduce number of leading zeroes */
  338. cp->offset *= 1000.0;
  339. cp->delay *= 1000.0;
  340. cp->jitter *= 1000.0;
  341. cp->weight = p->weight;
  342. cp->trustlevel = p->trustlevel;
  343. cp->stratum = p->reply[shift].status.stratum;
  344. cp->next = p->next - now < 0 ? 0 : p->next - now;
  345. cp->poll = p->poll;
  346. }
  347. void
  348. build_show_sensor(struct ctl_show_sensor *cs, struct ntp_sensor *s)
  349. {
  350. time_t now;
  351. u_int8_t shift;
  352. u_int32_t refid;
  353. now = getmonotime();
  354. memcpy(&refid, SENSOR_DEFAULT_REFID, sizeof(refid));
  355. refid = refid == s->refid ? 0 : s->refid;
  356. snprintf(cs->sensor_desc, sizeof(cs->sensor_desc),
  357. "%s %.4s", s->device, (char *)&refid);
  358. if (s->shift == 0)
  359. shift = SENSOR_OFFSETS - 1;
  360. else
  361. shift = s->shift - 1;
  362. if (conf->status.synced == 1 &&
  363. s->offsets[shift].status.send_refid == conf->status.refid)
  364. cs->syncedto = 1;
  365. else
  366. cs->syncedto = 0;
  367. cs->weight = s->weight;
  368. cs->good = s->update.good;
  369. cs->stratum = s->offsets[shift].status.stratum;
  370. cs->next = s->next - now < 0 ? 0 : s->next - now;
  371. cs->poll = SENSOR_QUERY_INTERVAL;
  372. cs->offset = s->offsets[shift].offset * 1000.0;
  373. cs->correction = (double)s->correction / 1000.0;
  374. }