|
|
@ -1,4 +1,4 @@ |
|
|
|
/* $OpenBSD: md4.c,v 1.2 2004/04/28 20:24:59 millert Exp $ */ |
|
|
|
/* $OpenBSD: md4.c,v 1.3 2004/04/29 18:45:39 millert Exp $ */ |
|
|
|
|
|
|
|
/* |
|
|
|
* This code implements the MD4 message-digest algorithm. |
|
|
@ -19,65 +19,34 @@ |
|
|
|
*/ |
|
|
|
|
|
|
|
#if defined(LIBC_SCCS) && !defined(lint) |
|
|
|
static const char rcsid[] = "$OpenBSD: md4.c,v 1.2 2004/04/28 20:24:59 millert Exp $"; |
|
|
|
static const char rcsid[] = "$OpenBSD: md4.c,v 1.3 2004/04/29 18:45:39 millert Exp $"; |
|
|
|
#endif /* LIBC_SCCS and not lint */ |
|
|
|
|
|
|
|
#include <sys/types.h> |
|
|
|
#include <string.h> |
|
|
|
#include <md4.h> |
|
|
|
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
|
|
|
|
|
|
|
#define htole32_4(buf) /* Nothing */ |
|
|
|
#define htole32_14(buf) /* Nothing */ |
|
|
|
#define htole32_16(buf) /* Nothing */ |
|
|
|
|
|
|
|
#else |
|
|
|
|
|
|
|
#define htole32_4(buf) do { \ |
|
|
|
(buf)[ 0] = htole32((buf)[ 0]); \ |
|
|
|
(buf)[ 1] = htole32((buf)[ 1]); \ |
|
|
|
(buf)[ 2] = htole32((buf)[ 2]); \ |
|
|
|
(buf)[ 3] = htole32((buf)[ 3]); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define htole32_14(buf) do { \ |
|
|
|
(buf)[ 0] = htole32((buf)[ 0]); \ |
|
|
|
(buf)[ 1] = htole32((buf)[ 1]); \ |
|
|
|
(buf)[ 2] = htole32((buf)[ 2]); \ |
|
|
|
(buf)[ 3] = htole32((buf)[ 3]); \ |
|
|
|
(buf)[ 4] = htole32((buf)[ 4]); \ |
|
|
|
(buf)[ 5] = htole32((buf)[ 5]); \ |
|
|
|
(buf)[ 6] = htole32((buf)[ 6]); \ |
|
|
|
(buf)[ 7] = htole32((buf)[ 7]); \ |
|
|
|
(buf)[ 8] = htole32((buf)[ 8]); \ |
|
|
|
(buf)[ 9] = htole32((buf)[ 9]); \ |
|
|
|
(buf)[10] = htole32((buf)[10]); \ |
|
|
|
(buf)[11] = htole32((buf)[11]); \ |
|
|
|
(buf)[12] = htole32((buf)[12]); \ |
|
|
|
(buf)[13] = htole32((buf)[13]); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define htole32_16(buf) do { \ |
|
|
|
(buf)[ 0] = htole32((buf)[ 0]); \ |
|
|
|
(buf)[ 1] = htole32((buf)[ 1]); \ |
|
|
|
(buf)[ 2] = htole32((buf)[ 2]); \ |
|
|
|
(buf)[ 3] = htole32((buf)[ 3]); \ |
|
|
|
(buf)[ 4] = htole32((buf)[ 4]); \ |
|
|
|
(buf)[ 5] = htole32((buf)[ 5]); \ |
|
|
|
(buf)[ 6] = htole32((buf)[ 6]); \ |
|
|
|
(buf)[ 7] = htole32((buf)[ 7]); \ |
|
|
|
(buf)[ 8] = htole32((buf)[ 8]); \ |
|
|
|
(buf)[ 9] = htole32((buf)[ 9]); \ |
|
|
|
(buf)[10] = htole32((buf)[10]); \ |
|
|
|
(buf)[11] = htole32((buf)[11]); \ |
|
|
|
(buf)[12] = htole32((buf)[12]); \ |
|
|
|
(buf)[13] = htole32((buf)[13]); \ |
|
|
|
(buf)[14] = htole32((buf)[14]); \ |
|
|
|
(buf)[15] = htole32((buf)[15]); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#endif |
|
|
|
#define PUT_64BIT_LE(cp, value) do { \ |
|
|
|
(cp)[7] = (value) >> 56; \ |
|
|
|
(cp)[6] = (value) >> 48; \ |
|
|
|
(cp)[5] = (value) >> 40; \ |
|
|
|
(cp)[4] = (value) >> 32; \ |
|
|
|
(cp)[3] = (value) >> 24; \ |
|
|
|
(cp)[2] = (value) >> 16; \ |
|
|
|
(cp)[1] = (value) >> 8; \ |
|
|
|
(cp)[0] = (value); } while (0) |
|
|
|
|
|
|
|
#define PUT_32BIT_LE(cp, value) do { \ |
|
|
|
(cp)[3] = (value) >> 24; \ |
|
|
|
(cp)[2] = (value) >> 16; \ |
|
|
|
(cp)[1] = (value) >> 8; \ |
|
|
|
(cp)[0] = (value); } while (0) |
|
|
|
|
|
|
|
static u_char PADDING[MD4_BLOCK_LENGTH] = { |
|
|
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
|
|
|
}; |
|
|
|
|
|
|
|
/* |
|
|
|
* Start MD4 accumulation. |
|
|
@ -98,43 +67,37 @@ MD4Init(MD4_CTX *ctx) |
|
|
|
* of bytes. |
|
|
|
*/ |
|
|
|
void |
|
|
|
MD4Update(MD4_CTX *ctx, const unsigned char *buf, size_t len) |
|
|
|
MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len) |
|
|
|
{ |
|
|
|
u_int32_t count; |
|
|
|
u_int32_t have, need; |
|
|
|
|
|
|
|
/* Bytes already stored in ctx->buffer */ |
|
|
|
count = (u_int32_t)((ctx->count >> 3) & 0x3f); |
|
|
|
/* Check how many bytes we already have and how many more we need. */ |
|
|
|
have = (u_int32_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1)); |
|
|
|
need = MD4_BLOCK_LENGTH - have; |
|
|
|
|
|
|
|
/* Update bitcount */ |
|
|
|
ctx->count += (u_int64_t)len << 3; |
|
|
|
|
|
|
|
/* Handle any leading odd-sized chunks */ |
|
|
|
if (count) { |
|
|
|
unsigned char *p = (unsigned char *)ctx->buffer + count; |
|
|
|
|
|
|
|
count = MD4_BLOCK_LENGTH - count; |
|
|
|
if (len < count) { |
|
|
|
memcpy(p, buf, len); |
|
|
|
return; |
|
|
|
if (len >= need) { |
|
|
|
if (have != 0) { |
|
|
|
memcpy(ctx->buffer + have, input, need); |
|
|
|
MD4Transform(ctx->state, ctx->buffer); |
|
|
|
input += need; |
|
|
|
len -= need; |
|
|
|
have = 0; |
|
|
|
} |
|
|
|
memcpy(p, buf, count); |
|
|
|
htole32_16((u_int32_t *)ctx->buffer); |
|
|
|
MD4Transform(ctx->state, ctx->buffer); |
|
|
|
buf += count; |
|
|
|
len -= count; |
|
|
|
} |
|
|
|
|
|
|
|
/* Process data in MD4_BLOCK_LENGTH-byte chunks */ |
|
|
|
while (len >= MD4_BLOCK_LENGTH) { |
|
|
|
memcpy(ctx->buffer, buf, MD4_BLOCK_LENGTH); |
|
|
|
htole32_16((u_int32_t *)ctx->buffer); |
|
|
|
MD4Transform(ctx->state, ctx->buffer); |
|
|
|
buf += MD4_BLOCK_LENGTH; |
|
|
|
len -= MD4_BLOCK_LENGTH; |
|
|
|
/* Process data in MD4_BLOCK_LENGTH-byte chunks. */ |
|
|
|
while (len >= MD4_BLOCK_LENGTH) { |
|
|
|
MD4Transform(ctx->state, input); |
|
|
|
input += MD4_BLOCK_LENGTH; |
|
|
|
len -= MD4_BLOCK_LENGTH; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* Handle any remaining bytes of data. */ |
|
|
|
memcpy(ctx->buffer, buf, len); |
|
|
|
if (len != 0) |
|
|
|
memcpy(ctx->buffer + have, input, len); |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
@ -144,44 +107,25 @@ MD4Update(MD4_CTX *ctx, const unsigned char *buf, size_t len) |
|
|
|
void |
|
|
|
MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx) |
|
|
|
{ |
|
|
|
u_int32_t count; |
|
|
|
unsigned char *p; |
|
|
|
|
|
|
|
/* number of bytes mod 64 */ |
|
|
|
count = (u_int32_t)(ctx->count >> 3) & 0x3f; |
|
|
|
|
|
|
|
/* |
|
|
|
* Set the first char of padding to 0x80. |
|
|
|
* This is safe since there is always at least one byte free. |
|
|
|
*/ |
|
|
|
p = ctx->buffer + count; |
|
|
|
*p++ = 0x80; |
|
|
|
|
|
|
|
/* Bytes of padding needed to make 64 bytes */ |
|
|
|
count = 64 - 1 - count; |
|
|
|
|
|
|
|
/* Pad out to 56 mod 64 */ |
|
|
|
if (count < 8) { |
|
|
|
/* Two lots of padding: Pad the first block to 64 bytes */ |
|
|
|
memset(p, 0, count); |
|
|
|
htole32_16((u_int32_t *)ctx->buffer); |
|
|
|
MD4Transform(ctx->state, ctx->buffer); |
|
|
|
|
|
|
|
/* Now fill the next block with 56 bytes */ |
|
|
|
memset(ctx->buffer, 0, 56); |
|
|
|
} else { |
|
|
|
/* Pad block to 56 bytes */ |
|
|
|
memset(p, 0, count - 8); |
|
|
|
u_int8_t count[8]; |
|
|
|
u_int32_t padlen; |
|
|
|
int i; |
|
|
|
|
|
|
|
/* Convert count to 8 bytes in little endian order. */ |
|
|
|
PUT_64BIT_LE(count, ctx->count); |
|
|
|
|
|
|
|
/* Pad out to 56 mod 64. */ |
|
|
|
padlen = MD4_BLOCK_LENGTH - |
|
|
|
((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1)); |
|
|
|
if (padlen < 1 + 8) |
|
|
|
padlen += MD4_BLOCK_LENGTH; |
|
|
|
MD4Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */ |
|
|
|
MD4Update(ctx, count, 8); |
|
|
|
|
|
|
|
if (digest != NULL) { |
|
|
|
for (i = 0; i < 4; i++) |
|
|
|
PUT_32BIT_LE(digest + i * 4, ctx->state[i]); |
|
|
|
} |
|
|
|
htole32_14((u_int32_t *)ctx->buffer); |
|
|
|
|
|
|
|
/* Append bit count and transform */ |
|
|
|
((u_int32_t *)ctx->buffer)[14] = ctx->count & 0xffffffff; |
|
|
|
((u_int32_t *)ctx->buffer)[15] = (u_int32_t)(ctx->count >> 32); |
|
|
|
|
|
|
|
MD4Transform(ctx->state, ctx->buffer); |
|
|
|
htole32_4(ctx->state); |
|
|
|
memcpy(digest, ctx->state, MD4_DIGEST_LENGTH); |
|
|
|
memset(ctx, 0, sizeof(*ctx)); /* in case it's sensitive */ |
|
|
|
} |
|
|
|
|
|
|
@ -203,15 +147,26 @@ MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx) |
|
|
|
* the data and converts bytes into longwords for this routine. |
|
|
|
*/ |
|
|
|
void |
|
|
|
MD4Transform(u_int32_t buf[4], const unsigned char inc[MD4_BLOCK_LENGTH]) |
|
|
|
MD4Transform(u_int32_t state[4], const u_int8_t block[MD4_BLOCK_LENGTH]) |
|
|
|
{ |
|
|
|
u_int32_t a, b, c, d; |
|
|
|
const u_int32_t *in = (const u_int32_t *)inc; |
|
|
|
u_int32_t a, b, c, d, in[MD4_BLOCK_LENGTH / 4]; |
|
|
|
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
|
|
|
memcpy(in, block, sizeof(in)); |
|
|
|
#else |
|
|
|
for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) { |
|
|
|
in[a] = (u_int32_t)( |
|
|
|
(u_int32_t)(block[a * 4 + 0]) | |
|
|
|
(u_int32_t)(block[a * 4 + 1]) << 8 | |
|
|
|
(u_int32_t)(block[a * 4 + 2]) << 16 | |
|
|
|
(u_int32_t)(block[a * 4 + 3]) << 24); |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
a = buf[0]; |
|
|
|
b = buf[1]; |
|
|
|
c = buf[2]; |
|
|
|
d = buf[3]; |
|
|
|
a = state[0]; |
|
|
|
b = state[1]; |
|
|
|
c = state[2]; |
|
|
|
d = state[3]; |
|
|
|
|
|
|
|
MD4STEP(F1, a, b, c, d, in[ 0], 3); |
|
|
|
MD4STEP(F1, d, a, b, c, in[ 1], 7); |
|
|
@ -264,8 +219,8 @@ MD4Transform(u_int32_t buf[4], const unsigned char inc[MD4_BLOCK_LENGTH]) |
|
|
|
MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11); |
|
|
|
MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15); |
|
|
|
|
|
|
|
buf[0] += a; |
|
|
|
buf[1] += b; |
|
|
|
buf[2] += c; |
|
|
|
buf[3] += d; |
|
|
|
state[0] += a; |
|
|
|
state[1] += b; |
|
|
|
state[2] += c; |
|
|
|
state[3] += d; |
|
|
|
} |