|
@ -1,229 +0,0 @@ |
|
|
/* $OpenBSD: md4.c,v 1.8 2014/01/08 06:14:56 tedu Exp $ */ |
|
|
|
|
|
|
|
|
|
|
|
/* |
|
|
|
|
|
* This code implements the MD4 message-digest algorithm. |
|
|
|
|
|
* The algorithm is due to Ron Rivest. This code was |
|
|
|
|
|
* written by Colin Plumb in 1993, no copyright is claimed. |
|
|
|
|
|
* This code is in the public domain; do with it what you wish. |
|
|
|
|
|
* Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186. |
|
|
|
|
|
* |
|
|
|
|
|
* Equivalent code is available from RSA Data Security, Inc. |
|
|
|
|
|
* This code has been tested against that, and is equivalent, |
|
|
|
|
|
* except that you don't need to include two pages of legalese |
|
|
|
|
|
* with every copy. |
|
|
|
|
|
* |
|
|
|
|
|
* To compute the message digest of a chunk of bytes, declare an |
|
|
|
|
|
* MD4Context structure, pass it to MD4Init, call MD4Update as |
|
|
|
|
|
* needed on buffers full of bytes, and then call MD4Final, which |
|
|
|
|
|
* will fill a supplied 16-byte array with the digest. |
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
|
|
#include <sys/types.h> |
|
|
|
|
|
#include <string.h> |
|
|
|
|
|
#include <md4.h> |
|
|
|
|
|
|
|
|
|
|
|
#define PUT_64BIT_LE(cp, value) do { \ |
|
|
|
|
|
(cp)[7] = (value) >> 56; \ |
|
|
|
|
|
(cp)[6] = (value) >> 48; \ |
|
|
|
|
|
(cp)[5] = (value) >> 40; \ |
|
|
|
|
|
(cp)[4] = (value) >> 32; \ |
|
|
|
|
|
(cp)[3] = (value) >> 24; \ |
|
|
|
|
|
(cp)[2] = (value) >> 16; \ |
|
|
|
|
|
(cp)[1] = (value) >> 8; \ |
|
|
|
|
|
(cp)[0] = (value); } while (0) |
|
|
|
|
|
|
|
|
|
|
|
#define PUT_32BIT_LE(cp, value) do { \ |
|
|
|
|
|
(cp)[3] = (value) >> 24; \ |
|
|
|
|
|
(cp)[2] = (value) >> 16; \ |
|
|
|
|
|
(cp)[1] = (value) >> 8; \ |
|
|
|
|
|
(cp)[0] = (value); } while (0) |
|
|
|
|
|
|
|
|
|
|
|
static u_int8_t PADDING[MD4_BLOCK_LENGTH] = { |
|
|
|
|
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
/* |
|
|
|
|
|
* Start MD4 accumulation. |
|
|
|
|
|
* Set bit count to 0 and buffer to mysterious initialization constants. |
|
|
|
|
|
*/ |
|
|
|
|
|
void |
|
|
|
|
|
MD4Init(MD4_CTX *ctx) |
|
|
|
|
|
{ |
|
|
|
|
|
ctx->count = 0; |
|
|
|
|
|
ctx->state[0] = 0x67452301; |
|
|
|
|
|
ctx->state[1] = 0xefcdab89; |
|
|
|
|
|
ctx->state[2] = 0x98badcfe; |
|
|
|
|
|
ctx->state[3] = 0x10325476; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/* |
|
|
|
|
|
* Update context to reflect the concatenation of another buffer full |
|
|
|
|
|
* of bytes. |
|
|
|
|
|
*/ |
|
|
|
|
|
void |
|
|
|
|
|
MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len) |
|
|
|
|
|
{ |
|
|
|
|
|
size_t have, need; |
|
|
|
|
|
|
|
|
|
|
|
/* Check how many bytes we already have and how many more we need. */ |
|
|
|
|
|
have = (size_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1)); |
|
|
|
|
|
need = MD4_BLOCK_LENGTH - have; |
|
|
|
|
|
|
|
|
|
|
|
/* Update bitcount */ |
|
|
|
|
|
ctx->count += (u_int64_t)len << 3; |
|
|
|
|
|
|
|
|
|
|
|
if (len >= need) { |
|
|
|
|
|
if (have != 0) { |
|
|
|
|
|
memcpy(ctx->buffer + have, input, need); |
|
|
|
|
|
MD4Transform(ctx->state, ctx->buffer); |
|
|
|
|
|
input += need; |
|
|
|
|
|
len -= need; |
|
|
|
|
|
have = 0; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/* Process data in MD4_BLOCK_LENGTH-byte chunks. */ |
|
|
|
|
|
while (len >= MD4_BLOCK_LENGTH) { |
|
|
|
|
|
MD4Transform(ctx->state, input); |
|
|
|
|
|
input += MD4_BLOCK_LENGTH; |
|
|
|
|
|
len -= MD4_BLOCK_LENGTH; |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/* Handle any remaining bytes of data. */ |
|
|
|
|
|
if (len != 0) |
|
|
|
|
|
memcpy(ctx->buffer + have, input, len); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/* |
|
|
|
|
|
* Pad pad to 64-byte boundary with the bit pattern |
|
|
|
|
|
* 1 0* (64-bit count of bits processed, MSB-first) |
|
|
|
|
|
*/ |
|
|
|
|
|
void |
|
|
|
|
|
MD4Pad(MD4_CTX *ctx) |
|
|
|
|
|
{ |
|
|
|
|
|
u_int8_t count[8]; |
|
|
|
|
|
size_t padlen; |
|
|
|
|
|
|
|
|
|
|
|
/* Convert count to 8 bytes in little endian order. */ |
|
|
|
|
|
PUT_64BIT_LE(count, ctx->count); |
|
|
|
|
|
|
|
|
|
|
|
/* Pad out to 56 mod 64. */ |
|
|
|
|
|
padlen = MD4_BLOCK_LENGTH - |
|
|
|
|
|
((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1)); |
|
|
|
|
|
if (padlen < 1 + 8) |
|
|
|
|
|
padlen += MD4_BLOCK_LENGTH; |
|
|
|
|
|
MD4Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */ |
|
|
|
|
|
MD4Update(ctx, count, 8); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/* |
|
|
|
|
|
* Final wrapup--call MD4Pad, fill in digest and zero out ctx. |
|
|
|
|
|
*/ |
|
|
|
|
|
void |
|
|
|
|
|
MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx) |
|
|
|
|
|
{ |
|
|
|
|
|
int i; |
|
|
|
|
|
|
|
|
|
|
|
MD4Pad(ctx); |
|
|
|
|
|
for (i = 0; i < 4; i++) |
|
|
|
|
|
PUT_32BIT_LE(digest + i * 4, ctx->state[i]); |
|
|
|
|
|
memset(ctx, 0, sizeof(*ctx)); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* The three core functions - F1 is optimized somewhat */ |
|
|
|
|
|
|
|
|
|
|
|
/* #define F1(x, y, z) (x & y | ~x & z) */ |
|
|
|
|
|
#define F1(x, y, z) (z ^ (x & (y ^ z))) |
|
|
|
|
|
#define F2(x, y, z) ((x & y) | (x & z) | (y & z)) |
|
|
|
|
|
#define F3(x, y, z) (x ^ y ^ z) |
|
|
|
|
|
|
|
|
|
|
|
/* This is the central step in the MD4 algorithm. */ |
|
|
|
|
|
#define MD4STEP(f, w, x, y, z, data, s) \ |
|
|
|
|
|
( w += f(x, y, z) + data, w = w<<s | w>>(32-s) ) |
|
|
|
|
|
|
|
|
|
|
|
/* |
|
|
|
|
|
* The core of the MD4 algorithm, this alters an existing MD4 hash to |
|
|
|
|
|
* reflect the addition of 16 longwords of new data. MD4Update blocks |
|
|
|
|
|
* the data and converts bytes into longwords for this routine. |
|
|
|
|
|
*/ |
|
|
|
|
|
void |
|
|
|
|
|
MD4Transform(u_int32_t state[4], const u_int8_t block[MD4_BLOCK_LENGTH]) |
|
|
|
|
|
{ |
|
|
|
|
|
u_int32_t a, b, c, d, in[MD4_BLOCK_LENGTH / 4]; |
|
|
|
|
|
|
|
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
|
|
|
|
|
memcpy(in, block, sizeof(in)); |
|
|
|
|
|
#else |
|
|
|
|
|
for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) { |
|
|
|
|
|
in[a] = (u_int32_t)( |
|
|
|
|
|
(u_int32_t)(block[a * 4 + 0]) | |
|
|
|
|
|
(u_int32_t)(block[a * 4 + 1]) << 8 | |
|
|
|
|
|
(u_int32_t)(block[a * 4 + 2]) << 16 | |
|
|
|
|
|
(u_int32_t)(block[a * 4 + 3]) << 24); |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
a = state[0]; |
|
|
|
|
|
b = state[1]; |
|
|
|
|
|
c = state[2]; |
|
|
|
|
|
d = state[3]; |
|
|
|
|
|
|
|
|
|
|
|
MD4STEP(F1, a, b, c, d, in[ 0], 3); |
|
|
|
|
|
MD4STEP(F1, d, a, b, c, in[ 1], 7); |
|
|
|
|
|
MD4STEP(F1, c, d, a, b, in[ 2], 11); |
|
|
|
|
|
MD4STEP(F1, b, c, d, a, in[ 3], 19); |
|
|
|
|
|
MD4STEP(F1, a, b, c, d, in[ 4], 3); |
|
|
|
|
|
MD4STEP(F1, d, a, b, c, in[ 5], 7); |
|
|
|
|
|
MD4STEP(F1, c, d, a, b, in[ 6], 11); |
|
|
|
|
|
MD4STEP(F1, b, c, d, a, in[ 7], 19); |
|
|
|
|
|
MD4STEP(F1, a, b, c, d, in[ 8], 3); |
|
|
|
|
|
MD4STEP(F1, d, a, b, c, in[ 9], 7); |
|
|
|
|
|
MD4STEP(F1, c, d, a, b, in[10], 11); |
|
|
|
|
|
MD4STEP(F1, b, c, d, a, in[11], 19); |
|
|
|
|
|
MD4STEP(F1, a, b, c, d, in[12], 3); |
|
|
|
|
|
MD4STEP(F1, d, a, b, c, in[13], 7); |
|
|
|
|
|
MD4STEP(F1, c, d, a, b, in[14], 11); |
|
|
|
|
|
MD4STEP(F1, b, c, d, a, in[15], 19); |
|
|
|
|
|
|
|
|
|
|
|
MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999, 3); |
|
|
|
|
|
MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999, 5); |
|
|
|
|
|
MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999, 9); |
|
|
|
|
|
MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13); |
|
|
|
|
|
MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999, 3); |
|
|
|
|
|
MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999, 5); |
|
|
|
|
|
MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999, 9); |
|
|
|
|
|
MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13); |
|
|
|
|
|
MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999, 3); |
|
|
|
|
|
MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999, 5); |
|
|
|
|
|
MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999, 9); |
|
|
|
|
|
MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13); |
|
|
|
|
|
MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999, 3); |
|
|
|
|
|
MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999, 5); |
|
|
|
|
|
MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999, 9); |
|
|
|
|
|
MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13); |
|
|
|
|
|
|
|
|
|
|
|
MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1, 3); |
|
|
|
|
|
MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1, 9); |
|
|
|
|
|
MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11); |
|
|
|
|
|
MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15); |
|
|
|
|
|
MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1, 3); |
|
|
|
|
|
MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1, 9); |
|
|
|
|
|
MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11); |
|
|
|
|
|
MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15); |
|
|
|
|
|
MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1, 3); |
|
|
|
|
|
MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1, 9); |
|
|
|
|
|
MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11); |
|
|
|
|
|
MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15); |
|
|
|
|
|
MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1, 3); |
|
|
|
|
|
MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1, 9); |
|
|
|
|
|
MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11); |
|
|
|
|
|
MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15); |
|
|
|
|
|
|
|
|
|
|
|
state[0] += a; |
|
|
|
|
|
state[1] += b; |
|
|
|
|
|
state[2] += c; |
|
|
|
|
|
state[3] += d; |
|
|
|
|
|
} |
|
|
|