|
|
@ -0,0 +1,271 @@ |
|
|
|
/* $OpenBSD: md4.c,v 1.1 2004/04/28 16:54:00 millert Exp $ */ |
|
|
|
|
|
|
|
/* |
|
|
|
* This code implements the MD4 message-digest algorithm. |
|
|
|
* The algorithm is due to Ron Rivest. This code was |
|
|
|
* written by Colin Plumb in 1993, no copyright is claimed. |
|
|
|
* This code is in the public domain; do with it what you wish. |
|
|
|
* Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186. |
|
|
|
* |
|
|
|
* Equivalent code is available from RSA Data Security, Inc. |
|
|
|
* This code has been tested against that, and is equivalent, |
|
|
|
* except that you don't need to include two pages of legalese |
|
|
|
* with every copy. |
|
|
|
* |
|
|
|
* To compute the message digest of a chunk of bytes, declare an |
|
|
|
* MD4Context structure, pass it to MD4Init, call MD4Update as |
|
|
|
* needed on buffers full of bytes, and then call MD4Final, which |
|
|
|
* will fill a supplied 16-byte array with the digest. |
|
|
|
*/ |
|
|
|
|
|
|
|
#if defined(LIBC_SCCS) && !defined(lint) |
|
|
|
static const char rcsid[] = "$OpenBSD: md4.c,v 1.1 2004/04/28 16:54:00 millert Exp $"; |
|
|
|
#endif /* LIBC_SCCS and not lint */ |
|
|
|
|
|
|
|
#include <sys/types.h> |
|
|
|
#include <string.h> |
|
|
|
#include <md4.h> |
|
|
|
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
|
|
|
|
|
|
|
#define htole32_4(buf) /* Nothing */ |
|
|
|
#define htole32_14(buf) /* Nothing */ |
|
|
|
#define htole32_16(buf) /* Nothing */ |
|
|
|
|
|
|
|
#else |
|
|
|
|
|
|
|
#define htole32_4(buf) do { \ |
|
|
|
(buf)[ 0] = htole32((buf)[ 0]); \ |
|
|
|
(buf)[ 1] = htole32((buf)[ 1]); \ |
|
|
|
(buf)[ 2] = htole32((buf)[ 2]); \ |
|
|
|
(buf)[ 3] = htole32((buf)[ 3]); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define htole32_14(buf) do { \ |
|
|
|
(buf)[ 0] = htole32((buf)[ 0]); \ |
|
|
|
(buf)[ 1] = htole32((buf)[ 1]); \ |
|
|
|
(buf)[ 2] = htole32((buf)[ 2]); \ |
|
|
|
(buf)[ 3] = htole32((buf)[ 3]); \ |
|
|
|
(buf)[ 4] = htole32((buf)[ 4]); \ |
|
|
|
(buf)[ 5] = htole32((buf)[ 5]); \ |
|
|
|
(buf)[ 6] = htole32((buf)[ 6]); \ |
|
|
|
(buf)[ 7] = htole32((buf)[ 7]); \ |
|
|
|
(buf)[ 8] = htole32((buf)[ 8]); \ |
|
|
|
(buf)[ 9] = htole32((buf)[ 9]); \ |
|
|
|
(buf)[10] = htole32((buf)[10]); \ |
|
|
|
(buf)[11] = htole32((buf)[11]); \ |
|
|
|
(buf)[12] = htole32((buf)[12]); \ |
|
|
|
(buf)[13] = htole32((buf)[13]); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#define htole32_16(buf) do { \ |
|
|
|
(buf)[ 0] = htole32((buf)[ 0]); \ |
|
|
|
(buf)[ 1] = htole32((buf)[ 1]); \ |
|
|
|
(buf)[ 2] = htole32((buf)[ 2]); \ |
|
|
|
(buf)[ 3] = htole32((buf)[ 3]); \ |
|
|
|
(buf)[ 4] = htole32((buf)[ 4]); \ |
|
|
|
(buf)[ 5] = htole32((buf)[ 5]); \ |
|
|
|
(buf)[ 6] = htole32((buf)[ 6]); \ |
|
|
|
(buf)[ 7] = htole32((buf)[ 7]); \ |
|
|
|
(buf)[ 8] = htole32((buf)[ 8]); \ |
|
|
|
(buf)[ 9] = htole32((buf)[ 9]); \ |
|
|
|
(buf)[10] = htole32((buf)[10]); \ |
|
|
|
(buf)[11] = htole32((buf)[11]); \ |
|
|
|
(buf)[12] = htole32((buf)[12]); \ |
|
|
|
(buf)[13] = htole32((buf)[13]); \ |
|
|
|
(buf)[14] = htole32((buf)[14]); \ |
|
|
|
(buf)[15] = htole32((buf)[15]); \ |
|
|
|
} while (0) |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
/* |
|
|
|
* Start MD4 accumulation. |
|
|
|
* Set bit count to 0 and buffer to mysterious initialization constants. |
|
|
|
*/ |
|
|
|
void |
|
|
|
MD4Init(MD4_CTX *ctx) |
|
|
|
{ |
|
|
|
ctx->count = 0; |
|
|
|
ctx->state[0] = 0x67452301; |
|
|
|
ctx->state[1] = 0xefcdab89; |
|
|
|
ctx->state[2] = 0x98badcfe; |
|
|
|
ctx->state[3] = 0x10325476; |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Update context to reflect the concatenation of another buffer full |
|
|
|
* of bytes. |
|
|
|
*/ |
|
|
|
void |
|
|
|
MD4Update(MD4_CTX *ctx, const unsigned char *buf, size_t len) |
|
|
|
{ |
|
|
|
u_int32_t count; |
|
|
|
|
|
|
|
/* Bytes already stored in ctx->buffer */ |
|
|
|
count = (u_int32_t)((ctx->count >> 3) & 0x3f); |
|
|
|
|
|
|
|
/* Update bitcount */ |
|
|
|
ctx->count += (u_int64_t)len << 3; |
|
|
|
|
|
|
|
/* Handle any leading odd-sized chunks */ |
|
|
|
if (count) { |
|
|
|
unsigned char *p = (unsigned char *)ctx->buffer + count; |
|
|
|
|
|
|
|
count = MD4_BLOCK_LENGTH - count; |
|
|
|
if (len < count) { |
|
|
|
memcpy(p, buf, len); |
|
|
|
return; |
|
|
|
} |
|
|
|
memcpy(p, buf, count); |
|
|
|
htole32_16((u_int32_t *)ctx->buffer); |
|
|
|
MD4Transform(ctx->state, ctx->buffer); |
|
|
|
buf += count; |
|
|
|
len -= count; |
|
|
|
} |
|
|
|
|
|
|
|
/* Process data in MD4_BLOCK_LENGTH-byte chunks */ |
|
|
|
while (len >= MD4_BLOCK_LENGTH) { |
|
|
|
memcpy(ctx->buffer, buf, MD4_BLOCK_LENGTH); |
|
|
|
htole32_16((u_int32_t *)ctx->buffer); |
|
|
|
MD4Transform(ctx->state, ctx->buffer); |
|
|
|
buf += MD4_BLOCK_LENGTH; |
|
|
|
len -= MD4_BLOCK_LENGTH; |
|
|
|
} |
|
|
|
|
|
|
|
/* Handle any remaining bytes of data. */ |
|
|
|
memcpy(ctx->buffer, buf, len); |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Final wrapup - pad to 64-byte boundary with the bit pattern |
|
|
|
* 1 0* (64-bit count of bits processed, MSB-first) |
|
|
|
*/ |
|
|
|
void |
|
|
|
MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx) |
|
|
|
{ |
|
|
|
u_int32_t count; |
|
|
|
unsigned char *p; |
|
|
|
|
|
|
|
/* number of bytes mod 64 */ |
|
|
|
count = (u_int32_t)(ctx->count >> 3) & 0x3f; |
|
|
|
|
|
|
|
/* |
|
|
|
* Set the first char of padding to 0x80. |
|
|
|
* This is safe since there is always at least one byte free. |
|
|
|
*/ |
|
|
|
p = ctx->buffer + count; |
|
|
|
*p++ = 0x80; |
|
|
|
|
|
|
|
/* Bytes of padding needed to make 64 bytes */ |
|
|
|
count = 64 - 1 - count; |
|
|
|
|
|
|
|
/* Pad out to 56 mod 64 */ |
|
|
|
if (count < 8) { |
|
|
|
/* Two lots of padding: Pad the first block to 64 bytes */ |
|
|
|
memset(p, 0, count); |
|
|
|
htole32_16((u_int32_t *)ctx->buffer); |
|
|
|
MD4Transform(ctx->state, ctx->buffer); |
|
|
|
|
|
|
|
/* Now fill the next block with 56 bytes */ |
|
|
|
memset(ctx->buffer, 0, 56); |
|
|
|
} else { |
|
|
|
/* Pad block to 56 bytes */ |
|
|
|
memset(p, 0, count - 8); |
|
|
|
} |
|
|
|
htole32_14((u_int32_t *)ctx->buffer); |
|
|
|
|
|
|
|
/* Append bit count and transform */ |
|
|
|
((u_int32_t *)ctx->buffer)[14] = ctx->count & 0xffffffff; |
|
|
|
((u_int32_t *)ctx->buffer)[15] = (u_int32_t)(ctx->count >> 32); |
|
|
|
|
|
|
|
MD4Transform(ctx->state, ctx->buffer); |
|
|
|
htole32_4(ctx->state); |
|
|
|
memcpy(digest, ctx->state, MD4_DIGEST_LENGTH); |
|
|
|
memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */ |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/* The three core functions - F1 is optimized somewhat */ |
|
|
|
|
|
|
|
/* #define F1(x, y, z) (x & y | ~x & z) */ |
|
|
|
#define F1(x, y, z) (z ^ (x & (y ^ z))) |
|
|
|
#define F2(x, y, z) ((x & y) | (x & z) | (y & z)) |
|
|
|
#define F3(x, y, z) (x ^ y ^ z) |
|
|
|
|
|
|
|
/* This is the central step in the MD4 algorithm. */ |
|
|
|
#define MD4STEP(f, w, x, y, z, data, s) \ |
|
|
|
( w += f(x, y, z) + data, w = w<<s | w>>(32-s) ) |
|
|
|
|
|
|
|
/* |
|
|
|
* The core of the MD4 algorithm, this alters an existing MD4 hash to |
|
|
|
* reflect the addition of 16 longwords of new data. MD4Update blocks |
|
|
|
* the data and converts bytes into longwords for this routine. |
|
|
|
*/ |
|
|
|
void |
|
|
|
MD4Transform(u_int32_t buf[4], const unsigned char inc[MD4_BLOCK_LENGTH]) |
|
|
|
{ |
|
|
|
u_int32_t a, b, c, d; |
|
|
|
const u_int32_t *in = (const u_int32_t *)inc; |
|
|
|
|
|
|
|
a = buf[0]; |
|
|
|
b = buf[1]; |
|
|
|
c = buf[2]; |
|
|
|
d = buf[3]; |
|
|
|
|
|
|
|
MD4STEP(F1, a, b, c, d, in[ 0], 3); |
|
|
|
MD4STEP(F1, d, a, b, c, in[ 1], 7); |
|
|
|
MD4STEP(F1, c, d, a, b, in[ 2], 11); |
|
|
|
MD4STEP(F1, b, c, d, a, in[ 3], 19); |
|
|
|
MD4STEP(F1, a, b, c, d, in[ 4], 3); |
|
|
|
MD4STEP(F1, d, a, b, c, in[ 5], 7); |
|
|
|
MD4STEP(F1, c, d, a, b, in[ 6], 11); |
|
|
|
MD4STEP(F1, b, c, d, a, in[ 7], 19); |
|
|
|
MD4STEP(F1, a, b, c, d, in[ 8], 3); |
|
|
|
MD4STEP(F1, d, a, b, c, in[ 9], 7); |
|
|
|
MD4STEP(F1, c, d, a, b, in[10], 11); |
|
|
|
MD4STEP(F1, b, c, d, a, in[11], 19); |
|
|
|
MD4STEP(F1, a, b, c, d, in[12], 3); |
|
|
|
MD4STEP(F1, d, a, b, c, in[13], 7); |
|
|
|
MD4STEP(F1, c, d, a, b, in[14], 11); |
|
|
|
MD4STEP(F1, b, c, d, a, in[15], 19); |
|
|
|
|
|
|
|
MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999, 3); |
|
|
|
MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999, 5); |
|
|
|
MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999, 9); |
|
|
|
MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13); |
|
|
|
MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999, 3); |
|
|
|
MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999, 5); |
|
|
|
MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999, 9); |
|
|
|
MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13); |
|
|
|
MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999, 3); |
|
|
|
MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999, 5); |
|
|
|
MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999, 9); |
|
|
|
MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13); |
|
|
|
MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999, 3); |
|
|
|
MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999, 5); |
|
|
|
MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999, 9); |
|
|
|
MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13); |
|
|
|
|
|
|
|
MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1, 3); |
|
|
|
MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1, 9); |
|
|
|
MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11); |
|
|
|
MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15); |
|
|
|
MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1, 3); |
|
|
|
MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1, 9); |
|
|
|
MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11); |
|
|
|
MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15); |
|
|
|
MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1, 3); |
|
|
|
MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1, 9); |
|
|
|
MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11); |
|
|
|
MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15); |
|
|
|
MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1, 3); |
|
|
|
MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1, 9); |
|
|
|
MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11); |
|
|
|
MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15); |
|
|
|
|
|
|
|
buf[0] += a; |
|
|
|
buf[1] += b; |
|
|
|
buf[2] += c; |
|
|
|
buf[3] += d; |
|
|
|
} |