|
|
@ -0,0 +1,258 @@ |
|
|
|
/* $OpenBSD: md5.c,v 1.1 2004/04/28 16:46:03 millert Exp $ */ |
|
|
|
|
|
|
|
/* |
|
|
|
* This code implements the MD5 message-digest algorithm. |
|
|
|
* The algorithm is due to Ron Rivest. This code was |
|
|
|
* written by Colin Plumb in 1993, no copyright is claimed. |
|
|
|
* This code is in the public domain; do with it what you wish. |
|
|
|
* |
|
|
|
* Equivalent code is available from RSA Data Security, Inc. |
|
|
|
* This code has been tested against that, and is equivalent, |
|
|
|
* except that you don't need to include two pages of legalese |
|
|
|
* with every copy. |
|
|
|
* |
|
|
|
* To compute the message digest of a chunk of bytes, declare an |
|
|
|
* MD5Context structure, pass it to MD5Init, call MD5Update as |
|
|
|
* needed on buffers full of bytes, and then call MD5Final, which |
|
|
|
* will fill a supplied 16-byte array with the digest. |
|
|
|
*/ |
|
|
|
|
|
|
|
#if defined(LIBC_SCCS) && !defined(lint) |
|
|
|
static const char rcsid[] = "$OpenBSD: md5.c,v 1.1 2004/04/28 16:46:03 millert Exp $"; |
|
|
|
#endif /* LIBC_SCCS and not lint */ |
|
|
|
|
|
|
|
#include <sys/types.h> |
|
|
|
#include <string.h> |
|
|
|
#include <md5.h> |
|
|
|
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
|
|
|
#define htole32n(buf, n) /* Nothing */ |
|
|
|
#else |
|
|
|
/* |
|
|
|
* Note: this code is harmless on little-endian machines. |
|
|
|
* XXX - unroll calls to htole32n -> htole32? |
|
|
|
*/ |
|
|
|
void |
|
|
|
htole32n(u_int32_t *buf, size_t n) |
|
|
|
{ |
|
|
|
while (n--) { |
|
|
|
*buf = htole32(*buf); |
|
|
|
buf++; |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
/* |
|
|
|
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
|
|
|
* initialization constants. |
|
|
|
*/ |
|
|
|
void |
|
|
|
MD5Init(MD5_CTX *ctx) |
|
|
|
{ |
|
|
|
ctx->buf[0] = 0x67452301; |
|
|
|
ctx->buf[1] = 0xefcdab89; |
|
|
|
ctx->buf[2] = 0x98badcfe; |
|
|
|
ctx->buf[3] = 0x10325476; |
|
|
|
|
|
|
|
ctx->bits[0] = 0; |
|
|
|
ctx->bits[1] = 0; |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Update context to reflect the concatenation of another buffer full |
|
|
|
* of bytes. |
|
|
|
*/ |
|
|
|
void |
|
|
|
MD5Update(MD5_CTX *ctx, const unsigned char *buf, size_t len) |
|
|
|
{ |
|
|
|
u_int32_t t; |
|
|
|
|
|
|
|
/* Update bitcount */ |
|
|
|
|
|
|
|
t = ctx->bits[0]; |
|
|
|
if ((ctx->bits[0] = t + ((u_int32_t)len << 3)) < t) |
|
|
|
ctx->bits[1]++; /* Carry from low to high */ |
|
|
|
ctx->bits[1] += len >> 29; |
|
|
|
|
|
|
|
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ |
|
|
|
|
|
|
|
/* Handle any leading odd-sized chunks */ |
|
|
|
|
|
|
|
if (t) { |
|
|
|
unsigned char *p = (unsigned char *)ctx->in + t; |
|
|
|
|
|
|
|
t = 64 - t; |
|
|
|
if (len < t) { |
|
|
|
memcpy(p, buf, len); |
|
|
|
return; |
|
|
|
} |
|
|
|
memcpy(p, buf, t); |
|
|
|
htole32n((u_int32_t *)ctx->in, 16); |
|
|
|
MD5Transform(ctx->buf, ctx->in); |
|
|
|
buf += t; |
|
|
|
len -= t; |
|
|
|
} |
|
|
|
|
|
|
|
/* Process data in 64-byte chunks */ |
|
|
|
while (len >= 64) { |
|
|
|
memcpy(ctx->in, buf, 64); |
|
|
|
htole32n((u_int32_t *)ctx->in, 16); |
|
|
|
MD5Transform(ctx->buf, ctx->in); |
|
|
|
buf += 64; |
|
|
|
len -= 64; |
|
|
|
} |
|
|
|
|
|
|
|
/* Handle any remaining bytes of data. */ |
|
|
|
memcpy(ctx->in, buf, len); |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Final wrapup - pad to 64-byte boundary with the bit pattern |
|
|
|
* 1 0* (64-bit count of bits processed, MSB-first) |
|
|
|
*/ |
|
|
|
void |
|
|
|
MD5Final(unsigned char digest[16], MD5_CTX *ctx) |
|
|
|
{ |
|
|
|
size_t count; |
|
|
|
unsigned char *p; |
|
|
|
|
|
|
|
/* number of bytes mod 64 */ |
|
|
|
count = (ctx->bits[0] >> 3) & 0x3F; |
|
|
|
|
|
|
|
/* |
|
|
|
* Set the first char of padding to 0x80. |
|
|
|
* This is safe since there is always at least one byte free. |
|
|
|
*/ |
|
|
|
p = ctx->in + count; |
|
|
|
*p++ = 0x80; |
|
|
|
|
|
|
|
/* Bytes of padding needed to make 64 bytes */ |
|
|
|
count = 64 - 1 - count; |
|
|
|
|
|
|
|
/* Pad out to 56 mod 64 */ |
|
|
|
if (count < 8) { |
|
|
|
/* Two lots of padding: Pad the first block to 64 bytes */ |
|
|
|
memset(p, 0, count); |
|
|
|
htole32n((u_int32_t *)ctx->in, 16); |
|
|
|
MD5Transform(ctx->buf, ctx->in); |
|
|
|
|
|
|
|
/* Now fill the next block with 56 bytes */ |
|
|
|
memset(ctx->in, 0, 56); |
|
|
|
} else { |
|
|
|
/* Pad block to 56 bytes */ |
|
|
|
memset(p, 0, count - 8); |
|
|
|
} |
|
|
|
htole32n((u_int32_t *)ctx->in, 14); |
|
|
|
|
|
|
|
/* Append length in bits and transform */ |
|
|
|
((u_int32_t *) ctx->in)[14] = ctx->bits[0]; |
|
|
|
((u_int32_t *) ctx->in)[15] = ctx->bits[1]; |
|
|
|
|
|
|
|
MD5Transform(ctx->buf, ctx->in); |
|
|
|
htole32n(ctx->buf, 4); |
|
|
|
memcpy(digest, ctx->buf, 16); |
|
|
|
memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */ |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/* The four core functions - F1 is optimized somewhat */ |
|
|
|
|
|
|
|
/* #define F1(x, y, z) (x & y | ~x & z) */ |
|
|
|
#define F1(x, y, z) (z ^ (x & (y ^ z))) |
|
|
|
#define F2(x, y, z) F1(z, x, y) |
|
|
|
#define F3(x, y, z) (x ^ y ^ z) |
|
|
|
#define F4(x, y, z) (y ^ (x | ~z)) |
|
|
|
|
|
|
|
/* This is the central step in the MD5 algorithm. */ |
|
|
|
#define MD5STEP(f, w, x, y, z, data, s) \ |
|
|
|
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) |
|
|
|
|
|
|
|
/* |
|
|
|
* The core of the MD5 algorithm, this alters an existing MD5 hash to |
|
|
|
* reflect the addition of 16 longwords of new data. MD5Update blocks |
|
|
|
* the data and converts bytes into longwords for this routine. |
|
|
|
*/ |
|
|
|
void |
|
|
|
MD5Transform(u_int32_t buf[4], const unsigned char inc[64]) |
|
|
|
{ |
|
|
|
u_int32_t a, b, c, d; |
|
|
|
const u_int32_t *in = (const u_int32_t *)inc; |
|
|
|
|
|
|
|
a = buf[0]; |
|
|
|
b = buf[1]; |
|
|
|
c = buf[2]; |
|
|
|
d = buf[3]; |
|
|
|
|
|
|
|
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); |
|
|
|
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); |
|
|
|
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); |
|
|
|
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); |
|
|
|
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); |
|
|
|
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); |
|
|
|
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); |
|
|
|
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); |
|
|
|
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); |
|
|
|
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); |
|
|
|
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); |
|
|
|
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); |
|
|
|
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); |
|
|
|
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); |
|
|
|
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); |
|
|
|
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); |
|
|
|
|
|
|
|
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); |
|
|
|
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); |
|
|
|
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); |
|
|
|
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); |
|
|
|
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); |
|
|
|
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); |
|
|
|
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); |
|
|
|
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); |
|
|
|
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); |
|
|
|
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); |
|
|
|
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); |
|
|
|
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); |
|
|
|
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); |
|
|
|
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); |
|
|
|
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); |
|
|
|
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); |
|
|
|
|
|
|
|
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); |
|
|
|
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); |
|
|
|
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); |
|
|
|
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); |
|
|
|
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); |
|
|
|
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); |
|
|
|
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); |
|
|
|
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); |
|
|
|
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); |
|
|
|
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); |
|
|
|
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); |
|
|
|
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); |
|
|
|
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); |
|
|
|
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); |
|
|
|
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); |
|
|
|
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); |
|
|
|
|
|
|
|
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); |
|
|
|
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); |
|
|
|
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); |
|
|
|
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); |
|
|
|
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); |
|
|
|
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); |
|
|
|
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); |
|
|
|
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); |
|
|
|
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); |
|
|
|
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); |
|
|
|
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); |
|
|
|
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); |
|
|
|
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); |
|
|
|
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); |
|
|
|
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); |
|
|
|
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); |
|
|
|
|
|
|
|
buf[0] += a; |
|
|
|
buf[1] += b; |
|
|
|
buf[2] += c; |
|
|
|
buf[3] += d; |
|
|
|
} |