From bd36abfa7c638c4e63c4242b5d8ca93ec8892618 Mon Sep 17 00:00:00 2001 From: tedu <> Date: Mon, 6 Apr 2015 20:49:41 +0000 Subject: [PATCH] bludgeon DES support out of crypt. long live the bcrypt. --- src/lib/libc/crypt/crypt.3 | 87 +---- src/lib/libc/crypt/crypt.c | 683 +------------------------------------ 2 files changed, 9 insertions(+), 761 deletions(-) diff --git a/src/lib/libc/crypt/crypt.3 b/src/lib/libc/crypt/crypt.3 index f6373c51..c8ebf986 100644 --- a/src/lib/libc/crypt/crypt.3 +++ b/src/lib/libc/crypt/crypt.3 @@ -1,4 +1,4 @@ -.\" $OpenBSD: crypt.3,v 1.44 2014/12/08 20:46:04 tedu Exp $ +.\" $OpenBSD: crypt.3,v 1.45 2015/04/06 20:49:41 tedu Exp $ .\" .\" FreeSec: libcrypt .\" @@ -31,7 +31,7 @@ .\" .\" Manual page, using -mandoc macros .\" -.Dd $Mdocdate: December 8 2014 $ +.Dd $Mdocdate: April 6 2015 $ .Dt CRYPT 3 .Os .Sh NAME @@ -58,8 +58,7 @@ and .Pp The .Fn crypt -function performs password hashing based on the -NBS Data Encryption Standard (DES). +function performs password hashing. Additional code has been added to deter key search attempts and to use stronger hashing algorithms. .Pp @@ -71,15 +70,7 @@ string typically a user's typed password. The second, .Fa setting , -is in one of three forms: -if it begins with an underscore -.Pq Ql _ -then an extended format is used -in interpreting both the -.Fa key -and the -.Fa setting , -as outlined below. +currently supports a single form. If it begins with a string character .Pq Ql $ @@ -87,28 +78,6 @@ and a number then a different algorithm is used depending on the number. At the moment .Ql $2 chooses Blowfish hashing; see below for more information. -.Ss Extended crypt -The -.Fa key -is divided into groups of 8 characters (the last group is null-padded) -and the low-order 7 bits of each character (56 bits per group) are -used to form the DES key as follows: -the first group of 56 bits becomes the initial DES key. -For each additional group, the XOR of the encryption of the current DES -key with itself and the group bits becomes the next DES key. -.Pp -The -.Fa setting -is a 9-character array consisting of an underscore followed -by 4 bytes of iteration count and 4 bytes of salt. -These are encoded as printable characters, 6 bits per character, -least significant character first. -The values 0 to 63 are encoded as -.Dq \&./0-9A-Za-z . -This allows 24 bits for both -.Fa count -and -.Fa salt . .Ss Blowfish crypt The Blowfish version of crypt has 128 bits of .Fa salt @@ -141,42 +110,6 @@ A valid Blowfish password looks like this: The whole Blowfish password string is passed as .Fa setting for interpretation. -.Ss Traditional crypt -The first 8 bytes of the -.Fa key -are null-padded, and the low-order 7 bits of -each character is used to form the 56-bit DES key. -.Pp -The -.Fa setting -is a 2-character array of the ASCII-encoded salt. -Thus only 12 bits of -.Fa salt -are used. -.Fa count -is set to 25. -.Ss DES Algorithm -The -.Fa salt -introduces disorder in the DES -algorithm in one of 16777216 or 4096 possible ways -(i.e., with 24 or 12 bits: if bit -.Em i -of the -.Fa salt -is set, then bits -.Em i -and -.Em i+24 -are swapped in the DES E-box output). -.Pp -The DES key is used to encrypt a 64-bit constant using -.Fa count -iterations of DES. -The value returned is a NUL-terminated -string, 20 or 13 bytes (plus NUL) in length, consisting of the -.Fa setting -followed by the encoded 64-bit encryption. .Sh RETURN VALUES The function .Fn crypt @@ -196,20 +129,16 @@ A rotor-based .Fn crypt function appeared in .At v3 . -The current style +A DES-based .Fn crypt first appeared in .At v7 . -.Sh AUTHORS -.An David Burren Aq Mt davidb@werj.com.au -wrote the original DES functions. +.Fn bcrypt +first appeared in +.Ox 2.1 . .Sh BUGS The .Fn crypt function returns a pointer to static data, and subsequent calls to .Fn crypt will modify the same object. -.Pp -With DES hashing, passwords containing the byte 0x80 use less key entropy -than other passwords. -This is an implementation bug, not a bug in the DES cipher. diff --git a/src/lib/libc/crypt/crypt.c b/src/lib/libc/crypt/crypt.c index 7d21d4fb..c61f360a 100644 --- a/src/lib/libc/crypt/crypt.c +++ b/src/lib/libc/crypt/crypt.c @@ -1,686 +1,10 @@ -/* $OpenBSD: crypt.c,v 1.26 2015/01/16 16:48:51 deraadt Exp $ */ +/* $OpenBSD: crypt.c,v 1.27 2015/04/06 20:49:41 tedu Exp $ */ -/* - * FreeSec: libcrypt - * - * Copyright (c) 1994 David Burren - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 4. Neither the name of the author nor the names of other contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - * - * - * This is an original implementation of the DES and the crypt(3) interfaces - * by David Burren . - * - * An excellent reference on the underlying algorithm (and related - * algorithms) is: - * - * B. Schneier, Applied Cryptography: protocols, algorithms, - * and source code in C, John Wiley & Sons, 1994. - * - * Note that in that book's description of DES the lookups for the initial, - * pbox, and final permutations are inverted (this has been brought to the - * attention of the author). A list of errata for this book has been - * posted to the sci.crypt newsgroup by the author and is available for FTP. - */ - -#include #include -#include -#include - -#ifdef DEBUG -# include -#endif - -static const u_char IP[64] = { - 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, - 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, - 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, - 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 -}; - -static u_char inv_key_perm[64]; -static u_char u_key_perm[56]; -static u_char const key_perm[56] = { - 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, - 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, - 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, - 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 -}; - -static const u_char key_shifts[16] = { - 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 -}; - -static u_char inv_comp_perm[56]; -static const u_char comp_perm[48] = { - 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, - 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, - 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, - 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 -}; - -/* - * No E box is used, as it's replaced by some ANDs, shifts, and ORs. - */ - -static u_char u_sbox[8][64]; -static const u_char sbox[8][64] = { - { - 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, - 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, - 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, - 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 - }, - { - 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, - 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, - 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, - 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 - }, - { - 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, - 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, - 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, - 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 - }, - { - 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, - 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, - 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, - 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 - }, - { - 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, - 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, - 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, - 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 - }, - { - 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, - 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, - 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, - 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 - }, - { - 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, - 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, - 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, - 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 - }, - { - 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, - 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, - 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, - 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 - } -}; - -static u_char un_pbox[32]; -static const u_char pbox[32] = { - 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, - 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 -}; - -const u_int32_t _des_bits32[32] = -{ - 0x80000000, 0x40000000, 0x20000000, 0x10000000, - 0x08000000, 0x04000000, 0x02000000, 0x01000000, - 0x00800000, 0x00400000, 0x00200000, 0x00100000, - 0x00080000, 0x00040000, 0x00020000, 0x00010000, - 0x00008000, 0x00004000, 0x00002000, 0x00001000, - 0x00000800, 0x00000400, 0x00000200, 0x00000100, - 0x00000080, 0x00000040, 0x00000020, 0x00000010, - 0x00000008, 0x00000004, 0x00000002, 0x00000001 -}; - -static const u_char _des_bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; - -static const u_int32_t *bits28, *bits24; -static u_char init_perm[64], final_perm[64]; -static u_int32_t en_keysl[16], en_keysr[16]; -static u_int32_t de_keysl[16], de_keysr[16]; -int _des_initialised = 0; -static u_char m_sbox[4][4096]; -static u_int32_t psbox[4][256]; -static u_int32_t ip_maskl[8][256], ip_maskr[8][256]; -static u_int32_t fp_maskl[8][256], fp_maskr[8][256]; -static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; -static u_int32_t comp_maskl[8][128], comp_maskr[8][128]; -static u_int32_t old_rawkey0, old_rawkey1; - -static u_char ascii64[] = - "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; -/* 0000000000111111111122222222223333333333444444444455555555556666 */ -/* 0123456789012345678901234567890123456789012345678901234567890123 */ - -static __inline int -ascii_to_bin(char ch) -{ - if (ch > 'z') - return(0); - if (ch >= 'a') - return(ch - 'a' + 38); - if (ch > 'Z') - return(0); - if (ch >= 'A') - return(ch - 'A' + 12); - if (ch > '9') - return(0); - if (ch >= '.') - return(ch - '.'); - return(0); -} - -static void -_des_init(void) -{ - int i, j, b, k, inbit, obit; - u_int32_t *p, *il, *ir, *fl, *fr; - - old_rawkey0 = old_rawkey1 = 0; - bits24 = (bits28 = _des_bits32 + 4) + 4; - - /* - * Invert the S-boxes, reordering the input bits. - */ - for (i = 0; i < 8; i++) - for (j = 0; j < 64; j++) { - b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf); - u_sbox[i][j] = sbox[i][b]; - } - - /* - * Convert the inverted S-boxes into 4 arrays of 8 bits. - * Each will handle 12 bits of the S-box input. - */ - for (b = 0; b < 4; b++) - for (i = 0; i < 64; i++) - for (j = 0; j < 64; j++) - m_sbox[b][(i << 6) | j] = - (u_sbox[(b << 1)][i] << 4) | - u_sbox[(b << 1) + 1][j]; - - /* - * Set up the initial & final permutations into a useful form, and - * initialise the inverted key permutation. - */ - for (i = 0; i < 64; i++) { - init_perm[final_perm[i] = IP[i] - 1] = i; - inv_key_perm[i] = 255; - } - - /* - * Invert the key permutation and initialise the inverted key - * compression permutation. - */ - for (i = 0; i < 56; i++) { - u_key_perm[i] = key_perm[i] - 1; - inv_key_perm[key_perm[i] - 1] = i; - inv_comp_perm[i] = 255; - } - - /* - * Invert the key compression permutation. - */ - for (i = 0; i < 48; i++) { - inv_comp_perm[comp_perm[i] - 1] = i; - } - - /* - * Set up the OR-mask arrays for the initial and final permutations, - * and for the key initial and compression permutations. - */ - for (k = 0; k < 8; k++) { - for (i = 0; i < 256; i++) { - *(il = &ip_maskl[k][i]) = 0; - *(ir = &ip_maskr[k][i]) = 0; - *(fl = &fp_maskl[k][i]) = 0; - *(fr = &fp_maskr[k][i]) = 0; - for (j = 0; j < 8; j++) { - inbit = 8 * k + j; - if (i & _des_bits8[j]) { - if ((obit = init_perm[inbit]) < 32) - *il |= _des_bits32[obit]; - else - *ir |= _des_bits32[obit-32]; - if ((obit = final_perm[inbit]) < 32) - *fl |= _des_bits32[obit]; - else - *fr |= _des_bits32[obit - 32]; - } - } - } - for (i = 0; i < 128; i++) { - *(il = &key_perm_maskl[k][i]) = 0; - *(ir = &key_perm_maskr[k][i]) = 0; - for (j = 0; j < 7; j++) { - inbit = 8 * k + j; - if (i & _des_bits8[j + 1]) { - if ((obit = inv_key_perm[inbit]) == 255) - continue; - if (obit < 28) - *il |= bits28[obit]; - else - *ir |= bits28[obit - 28]; - } - } - *(il = &comp_maskl[k][i]) = 0; - *(ir = &comp_maskr[k][i]) = 0; - for (j = 0; j < 7; j++) { - inbit = 7 * k + j; - if (i & _des_bits8[j + 1]) { - if ((obit=inv_comp_perm[inbit]) == 255) - continue; - if (obit < 24) - *il |= bits24[obit]; - else - *ir |= bits24[obit - 24]; - } - } - } - } - - /* - * Invert the P-box permutation, and convert into OR-masks for - * handling the output of the S-box arrays setup above. - */ - for (i = 0; i < 32; i++) - un_pbox[pbox[i] - 1] = i; - - for (b = 0; b < 4; b++) - for (i = 0; i < 256; i++) { - *(p = &psbox[b][i]) = 0; - for (j = 0; j < 8; j++) { - if (i & _des_bits8[j]) - *p |= _des_bits32[un_pbox[8 * b + j]]; - } - } - - _des_initialised = 1; -} - -static u_int32_t -_des_setup_salt(int32_t salt) -{ - u_int32_t obit, saltbit, saltbits; - int i; - - saltbits = 0; - saltbit = 1; - obit = 0x800000; - for (i = 0; i < 24; i++) { - if (salt & saltbit) - saltbits |= obit; - saltbit <<= 1; - obit >>= 1; - } - return saltbits; -} - -static int -des_setkey(const char *key) -{ - u_int32_t k0, k1, rawkey0, rawkey1; - int shifts, round; - - if (!_des_initialised) - _des_init(); - - rawkey0 = ntohl(*(u_int32_t *) key); - rawkey1 = ntohl(*(u_int32_t *) (key + 4)); - - if ((rawkey0 | rawkey1) - && rawkey0 == old_rawkey0 - && rawkey1 == old_rawkey1) { - /* - * Already setup for this key. - * This optimisation fails on a zero key (which is weak and - * has bad parity anyway) in order to simplify the starting - * conditions. - */ - return(0); - } - old_rawkey0 = rawkey0; - old_rawkey1 = rawkey1; - - /* - * Do key permutation and split into two 28-bit subkeys. - */ - k0 = key_perm_maskl[0][rawkey0 >> 25] - | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] - | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] - | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] - | key_perm_maskl[4][rawkey1 >> 25] - | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] - | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] - | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; - k1 = key_perm_maskr[0][rawkey0 >> 25] - | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] - | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] - | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] - | key_perm_maskr[4][rawkey1 >> 25] - | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] - | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] - | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; - /* - * Rotate subkeys and do compression permutation. - */ - shifts = 0; - for (round = 0; round < 16; round++) { - u_int32_t t0, t1; - - shifts += key_shifts[round]; - - t0 = (k0 << shifts) | (k0 >> (28 - shifts)); - t1 = (k1 << shifts) | (k1 >> (28 - shifts)); - - de_keysl[15 - round] = - en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] - | comp_maskl[1][(t0 >> 14) & 0x7f] - | comp_maskl[2][(t0 >> 7) & 0x7f] - | comp_maskl[3][t0 & 0x7f] - | comp_maskl[4][(t1 >> 21) & 0x7f] - | comp_maskl[5][(t1 >> 14) & 0x7f] - | comp_maskl[6][(t1 >> 7) & 0x7f] - | comp_maskl[7][t1 & 0x7f]; - - de_keysr[15 - round] = - en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] - | comp_maskr[1][(t0 >> 14) & 0x7f] - | comp_maskr[2][(t0 >> 7) & 0x7f] - | comp_maskr[3][t0 & 0x7f] - | comp_maskr[4][(t1 >> 21) & 0x7f] - | comp_maskr[5][(t1 >> 14) & 0x7f] - | comp_maskr[6][(t1 >> 7) & 0x7f] - | comp_maskr[7][t1 & 0x7f]; - } - return(0); -} - -static int -_des_do_des(u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, - int count, u_int32_t saltbits) -{ - /* - * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. - */ - u_int32_t l, r, *kl, *kr, *kl1, *kr1; - u_int32_t f, r48l, r48r; - int round; - - if (count == 0) { - return(1); - } else if (count > 0) { - /* - * Encrypting - */ - kl1 = en_keysl; - kr1 = en_keysr; - } else { - /* - * Decrypting - */ - count = -count; - kl1 = de_keysl; - kr1 = de_keysr; - } - - /* - * Do initial permutation (IP). - */ - l = ip_maskl[0][l_in >> 24] - | ip_maskl[1][(l_in >> 16) & 0xff] - | ip_maskl[2][(l_in >> 8) & 0xff] - | ip_maskl[3][l_in & 0xff] - | ip_maskl[4][r_in >> 24] - | ip_maskl[5][(r_in >> 16) & 0xff] - | ip_maskl[6][(r_in >> 8) & 0xff] - | ip_maskl[7][r_in & 0xff]; - r = ip_maskr[0][l_in >> 24] - | ip_maskr[1][(l_in >> 16) & 0xff] - | ip_maskr[2][(l_in >> 8) & 0xff] - | ip_maskr[3][l_in & 0xff] - | ip_maskr[4][r_in >> 24] - | ip_maskr[5][(r_in >> 16) & 0xff] - | ip_maskr[6][(r_in >> 8) & 0xff] - | ip_maskr[7][r_in & 0xff]; - - while (count--) { - /* - * Do each round. - */ - kl = kl1; - kr = kr1; - round = 16; - while (round--) { - /* - * Expand R to 48 bits (simulate the E-box). - */ - r48l = ((r & 0x00000001) << 23) - | ((r & 0xf8000000) >> 9) - | ((r & 0x1f800000) >> 11) - | ((r & 0x01f80000) >> 13) - | ((r & 0x001f8000) >> 15); - - r48r = ((r & 0x0001f800) << 7) - | ((r & 0x00001f80) << 5) - | ((r & 0x000001f8) << 3) - | ((r & 0x0000001f) << 1) - | ((r & 0x80000000) >> 31); - /* - * Do salting for crypt() and friends, and - * XOR with the permuted key. - */ - f = (r48l ^ r48r) & saltbits; - r48l ^= f ^ *kl++; - r48r ^= f ^ *kr++; - /* - * Do sbox lookups (which shrink it back to 32 bits) - * and do the pbox permutation at the same time. - */ - f = psbox[0][m_sbox[0][r48l >> 12]] - | psbox[1][m_sbox[1][r48l & 0xfff]] - | psbox[2][m_sbox[2][r48r >> 12]] - | psbox[3][m_sbox[3][r48r & 0xfff]]; - /* - * Now that we've permuted things, complete f(). - */ - f ^= l; - l = r; - r = f; - } - r = l; - l = f; - } - /* - * Do final permutation (inverse of IP). - */ - *l_out = fp_maskl[0][l >> 24] - | fp_maskl[1][(l >> 16) & 0xff] - | fp_maskl[2][(l >> 8) & 0xff] - | fp_maskl[3][l & 0xff] - | fp_maskl[4][r >> 24] - | fp_maskl[5][(r >> 16) & 0xff] - | fp_maskl[6][(r >> 8) & 0xff] - | fp_maskl[7][r & 0xff]; - *r_out = fp_maskr[0][l >> 24] - | fp_maskr[1][(l >> 16) & 0xff] - | fp_maskr[2][(l >> 8) & 0xff] - | fp_maskr[3][l & 0xff] - | fp_maskr[4][r >> 24] - | fp_maskr[5][(r >> 16) & 0xff] - | fp_maskr[6][(r >> 8) & 0xff] - | fp_maskr[7][r & 0xff]; - return(0); -} - -static int -des_cipher(const char *in, char *out, int32_t salt, int count) -{ - u_int32_t l_out, r_out, rawl, rawr, saltbits; - u_int32_t x[2]; - int retval; - - if (!_des_initialised) - _des_init(); - - saltbits = _des_setup_salt(salt); - - memcpy(x, in, sizeof x); - rawl = ntohl(x[0]); - rawr = ntohl(x[1]); - retval = _des_do_des(rawl, rawr, &l_out, &r_out, count, saltbits); - - x[0] = htonl(l_out); - x[1] = htonl(r_out); - memcpy(out, x, sizeof x); - return(retval); -} - -static int -crypt_hashpass(const char *key, const char *setting, char *output) -{ - int i; - u_int32_t count, salt, l, r0, r1, saltbits, keybuf[2]; - u_char *p, *q; - - if (!_des_initialised) - _des_init(); - - /* - * Copy the key, shifting each character up by one bit - * and padding with zeros. - */ - q = (u_char *) keybuf; - while ((q - (u_char *) keybuf) < sizeof(keybuf)) { - if ((*q++ = *key << 1)) - key++; - } - if (des_setkey((char *) keybuf)) - return(-1); - - if (*setting == _PASSWORD_EFMT1) { - /* - * "new"-style: - * setting - underscore, 4 bytes of count, 4 bytes of salt - * key - unlimited characters - */ - for (i = 1, count = 0; i < 5; i++) - count |= ascii_to_bin(setting[i]) << (i - 1) * 6; - - for (i = 5, salt = 0; i < 9; i++) - salt |= ascii_to_bin(setting[i]) << (i - 5) * 6; - - while (*key) { - /* - * Encrypt the key with itself. - */ - if (des_cipher((char *)keybuf, (char *)keybuf, 0, 1)) - return(-1); - /* - * And XOR with the next 8 characters of the key. - */ - q = (u_char *) keybuf; - while (((q - (u_char *) keybuf) < sizeof(keybuf)) && - *key) - *q++ ^= *key++ << 1; - - if (des_setkey((char *) keybuf)) - return(-1); - } - strlcpy((char *)output, setting, 10); - - /* - * Double check that we weren't given a short setting. - * If we were, the above code will probably have created - * weird values for count and salt, but we don't really care. - * Just make sure the output string doesn't have an extra - * NUL in it. - */ - p = output + strlen((const char *)output); - } else { - /* - * "old"-style: - * setting - 2 bytes of salt - * key - up to 8 characters - */ - count = 25; - - salt = (ascii_to_bin(setting[1]) << 6) - | ascii_to_bin(setting[0]); - - output[0] = setting[0]; - /* - * If the encrypted password that the salt was extracted from - * is only 1 character long, the salt will be corrupted. We - * need to ensure that the output string doesn't have an extra - * NUL in it! - */ - output[1] = setting[1] ? setting[1] : output[0]; - - p = output + 2; - } - saltbits = _des_setup_salt(salt); - - /* - * Do it. - */ - if (_des_do_des(0, 0, &r0, &r1, count, saltbits)) - return(-1); - /* - * Now encode the result... - */ - l = (r0 >> 8); - *p++ = ascii64[(l >> 18) & 0x3f]; - *p++ = ascii64[(l >> 12) & 0x3f]; - *p++ = ascii64[(l >> 6) & 0x3f]; - *p++ = ascii64[l & 0x3f]; - - l = (r0 << 16) | ((r1 >> 16) & 0xffff); - *p++ = ascii64[(l >> 18) & 0x3f]; - *p++ = ascii64[(l >> 12) & 0x3f]; - *p++ = ascii64[(l >> 6) & 0x3f]; - *p++ = ascii64[l & 0x3f]; - - l = r1 << 2; - *p++ = ascii64[(l >> 12) & 0x3f]; - *p++ = ascii64[(l >> 6) & 0x3f]; - *p++ = ascii64[l & 0x3f]; - *p = 0; - - return(0); -} char * crypt(const char *key, const char *setting) { - static u_char goutput[21]; - extern char *bcrypt(const char *, const char *); - if (setting[0] == '$') { switch (setting[1]) { case '2': @@ -689,9 +13,4 @@ crypt(const char *key, const char *setting) return (NULL); } } - - memset(goutput, 0, sizeof(goutput)); - if (crypt_hashpass(key, setting, goutput) != 0) - return (NULL); - return goutput; }