Source code pulled from OpenBSD for OpenNTPD. The place to contribute to this code is via the OpenBSD CVS tree.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

511 lines
14 KiB

/* $OpenBSD: client.c,v 1.113 2020/01/30 15:55:41 otto Exp $ */
/*
* Copyright (c) 2003, 2004 Henning Brauer <henning@openbsd.org>
* Copyright (c) 2004 Alexander Guy <alexander.guy@andern.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/types.h>
#include <errno.h>
#include <md5.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include "ntpd.h"
int client_update(struct ntp_peer *);
int auto_cmp(const void *, const void *);
void handle_auto(u_int8_t, double);
void set_deadline(struct ntp_peer *, time_t);
void
set_next(struct ntp_peer *p, time_t t)
{
p->next = getmonotime() + t;
p->deadline = 0;
p->poll = t;
}
void
set_deadline(struct ntp_peer *p, time_t t)
{
p->deadline = getmonotime() + t;
p->next = 0;
}
int
client_peer_init(struct ntp_peer *p)
{
if ((p->query = calloc(1, sizeof(struct ntp_query))) == NULL)
fatal("client_peer_init calloc");
p->query->fd = -1;
p->query->msg.status = MODE_CLIENT | (NTP_VERSION << 3);
p->state = STATE_NONE;
p->shift = 0;
p->trustlevel = TRUSTLEVEL_PATHETIC;
p->lasterror = 0;
p->senderrors = 0;
return (client_addr_init(p));
}
int
client_addr_init(struct ntp_peer *p)
{
struct sockaddr_in *sa_in;
struct sockaddr_in6 *sa_in6;
struct ntp_addr *h;
for (h = p->addr; h != NULL; h = h->next) {
switch (h->ss.ss_family) {
case AF_INET:
sa_in = (struct sockaddr_in *)&h->ss;
if (ntohs(sa_in->sin_port) == 0)
sa_in->sin_port = htons(123);
p->state = STATE_DNS_DONE;
break;
case AF_INET6:
sa_in6 = (struct sockaddr_in6 *)&h->ss;
if (ntohs(sa_in6->sin6_port) == 0)
sa_in6->sin6_port = htons(123);
p->state = STATE_DNS_DONE;
break;
default:
fatalx("king bula sez: wrong AF in client_addr_init");
/* NOTREACHED */
}
}
p->query->fd = -1;
set_next(p, 0);
return (0);
}
int
client_nextaddr(struct ntp_peer *p)
{
if (p->query->fd != -1) {
close(p->query->fd);
p->query->fd = -1;
}
if (p->state == STATE_DNS_INPROGRESS)
return (-1);
if (p->addr_head.a == NULL) {
priv_dns(IMSG_HOST_DNS, p->addr_head.name, p->id);
p->state = STATE_DNS_INPROGRESS;
return (-1);
}
p->shift = 0;
p->trustlevel = TRUSTLEVEL_PATHETIC;
if (p->addr == NULL)
p->addr = p->addr_head.a;
else if ((p->addr = p->addr->next) == NULL)
return (1);
return (0);
}
int
client_query(struct ntp_peer *p)
{
int val;
if (p->addr == NULL && client_nextaddr(p) == -1) {
if (conf->settime)
set_next(p, INTERVAL_AUIO_DNSFAIL);
else
set_next(p, MAXIMUM(SETTIME_TIMEOUT,
scale_interval(INTERVAL_QUERY_AGGRESSIVE)));
return (0);
}
if (conf->status.synced && p->addr->notauth) {
peer_addr_head_clear(p);
client_nextaddr(p);
return (0);
}
if (p->state < STATE_DNS_DONE || p->addr == NULL)
return (-1);
if (p->query->fd == -1) {
struct sockaddr *sa = (struct sockaddr *)&p->addr->ss;
struct sockaddr *qa4 = (struct sockaddr *)&p->query_addr4;
struct sockaddr *qa6 = (struct sockaddr *)&p->query_addr6;
if ((p->query->fd = socket(p->addr->ss.ss_family, SOCK_DGRAM,
0)) == -1)
fatal("client_query socket");
if (p->addr->ss.ss_family == qa4->sa_family) {
if (bind(p->query->fd, qa4, SA_LEN(qa4)) == -1)
fatal("couldn't bind to IPv4 query address: %s",
log_sockaddr(qa4));
} else if (p->addr->ss.ss_family == qa6->sa_family) {
if (bind(p->query->fd, qa6, SA_LEN(qa6)) == -1)
fatal("couldn't bind to IPv6 query address: %s",
log_sockaddr(qa6));
}
if (connect(p->query->fd, sa, SA_LEN(sa)) == -1) {
if (errno == ECONNREFUSED || errno == ENETUNREACH ||
errno == EHOSTUNREACH || errno == EADDRNOTAVAIL) {
/* cycle through addresses, but do increase
senderrors */
client_nextaddr(p);
if (p->addr == NULL)
p->addr = p->addr_head.a;
set_next(p, MAXIMUM(SETTIME_TIMEOUT,
scale_interval(INTERVAL_QUERY_AGGRESSIVE)));
p->senderrors++;
return (-1);
} else
fatal("client_query connect");
}
val = IPTOS_LOWDELAY;
if (p->addr->ss.ss_family == AF_INET && setsockopt(p->query->fd,
IPPROTO_IP, IP_TOS, &val, sizeof(val)) == -1)
log_warn("setsockopt IPTOS_LOWDELAY");
val = 1;
if (setsockopt(p->query->fd, SOL_SOCKET, SO_TIMESTAMP,
&val, sizeof(val)) == -1)
fatal("setsockopt SO_TIMESTAMP");
}
/*
* Send out a random 64-bit number as our transmit time. The NTP
* server will copy said number into the originate field on the
* response that it sends us. This is totally legal per the SNTP spec.
*
* The impact of this is two fold: we no longer send out the current
* system time for the world to see (which may aid an attacker), and
* it gives us a (not very secure) way of knowing that we're not
* getting spoofed by an attacker that can't capture our traffic
* but can spoof packets from the NTP server we're communicating with.
*
* Save the real transmit timestamp locally.
*/
p->query->msg.xmttime.int_partl = arc4random();
p->query->msg.xmttime.fractionl = arc4random();
p->query->xmttime = gettime_corrected();
if (ntp_sendmsg(p->query->fd, NULL, &p->query->msg) == -1) {
p->senderrors++;
set_next(p, INTERVAL_QUERY_PATHETIC);
p->trustlevel = TRUSTLEVEL_PATHETIC;
return (-1);
}
p->senderrors = 0;
p->state = STATE_QUERY_SENT;
set_deadline(p, QUERYTIME_MAX);
return (0);
}
int
auto_cmp(const void *a, const void *b)
{
double at = *(const double *)a;
double bt = *(const double *)b;
return at < bt ? -1 : (at > bt ? 1 : 0);
}
void
handle_auto(uint8_t trusted, double offset)
{
static int count;
static double v[AUTO_REPLIES];
/*
* It happens the (constraint) resolves initially fail, don't give up
* but see if we get validated replies later.
*/
if (!trusted && conf->constraint_median == 0)
return;
if (offset < AUTO_THRESHOLD) {
/* don't bother */
priv_settime(0, "offset is negative or close enough");
return;
}
/* collect some more */
v[count++] = offset;
if (count < AUTO_REPLIES)
return;
/* we have enough */
qsort(v, count, sizeof(double), auto_cmp);
if (AUTO_REPLIES % 2 == 0)
offset = (v[AUTO_REPLIES / 2 - 1] + v[AUTO_REPLIES / 2]) / 2;
else
offset = v[AUTO_REPLIES / 2];
priv_settime(offset, "");
}
int
client_dispatch(struct ntp_peer *p, u_int8_t settime, u_int8_t automatic)
{
struct ntp_msg msg;
struct msghdr somsg;
struct iovec iov[1];
struct timeval tv;
char buf[NTP_MSGSIZE];
union {
struct cmsghdr hdr;
char buf[CMSG_SPACE(sizeof(tv))];
} cmsgbuf;
struct cmsghdr *cmsg;
ssize_t size;
double T1, T2, T3, T4;
time_t interval;
memset(&somsg, 0, sizeof(somsg));
iov[0].iov_base = buf;
iov[0].iov_len = sizeof(buf);
somsg.msg_iov = iov;
somsg.msg_iovlen = 1;
somsg.msg_control = cmsgbuf.buf;
somsg.msg_controllen = sizeof(cmsgbuf.buf);
T4 = getoffset();
if ((size = recvmsg(p->query->fd, &somsg, 0)) == -1) {
if (errno == EHOSTUNREACH || errno == EHOSTDOWN ||
errno == ENETUNREACH || errno == ENETDOWN ||
errno == ECONNREFUSED || errno == EADDRNOTAVAIL ||
errno == ENOPROTOOPT || errno == ENOENT) {
client_log_error(p, "recvmsg", errno);
set_next(p, error_interval());
return (0);
} else
fatal("recvfrom");
}
if (somsg.msg_flags & MSG_TRUNC) {
client_log_error(p, "recvmsg packet", EMSGSIZE);
set_next(p, error_interval());
return (0);
}
if (somsg.msg_flags & MSG_CTRUNC) {
client_log_error(p, "recvmsg control data", E2BIG);
set_next(p, error_interval());
return (0);
}
for (cmsg = CMSG_FIRSTHDR(&somsg); cmsg != NULL;
cmsg = CMSG_NXTHDR(&somsg, cmsg)) {
if (cmsg->cmsg_level == SOL_SOCKET &&
cmsg->cmsg_type == SCM_TIMESTAMP) {
memcpy(&tv, CMSG_DATA(cmsg), sizeof(tv));
T4 += gettime_from_timeval(&tv);
break;
}
}
ntp_getmsg((struct sockaddr *)&p->addr->ss, buf, size, &msg);
if (msg.orgtime.int_partl != p->query->msg.xmttime.int_partl ||
msg.orgtime.fractionl != p->query->msg.xmttime.fractionl)
return (0);
if ((msg.status & LI_ALARM) == LI_ALARM || msg.stratum == 0 ||
msg.stratum > NTP_MAXSTRATUM) {
char s[16];
if ((msg.status & LI_ALARM) == LI_ALARM) {
strlcpy(s, "alarm", sizeof(s));
} else if (msg.stratum == 0) {
/* Kiss-o'-Death (KoD) packet */
strlcpy(s, "KoD", sizeof(s));
} else if (msg.stratum > NTP_MAXSTRATUM) {
snprintf(s, sizeof(s), "stratum %d", msg.stratum);
}
interval = error_interval();
set_next(p, interval);
log_info("reply from %s: not synced (%s), next query %llds",
log_sockaddr((struct sockaddr *)&p->addr->ss), s,
(long long)interval);
return (0);
}
/*
* From RFC 2030 (with a correction to the delay math):
*
* Timestamp Name ID When Generated
* ------------------------------------------------------------
* Originate Timestamp T1 time request sent by client
* Receive Timestamp T2 time request received by server
* Transmit Timestamp T3 time reply sent by server
* Destination Timestamp T4 time reply received by client
*
* The roundtrip delay d and local clock offset t are defined as
*
* d = (T4 - T1) - (T3 - T2) t = ((T2 - T1) + (T3 - T4)) / 2.
*/
T1 = p->query->xmttime;
T2 = lfp_to_d(msg.rectime);
T3 = lfp_to_d(msg.xmttime);
/* Detect liars */
if (!p->trusted && conf->constraint_median != 0 &&
(constraint_check(T2) != 0 || constraint_check(T3) != 0)) {
log_info("reply from %s: constraint check failed",
log_sockaddr((struct sockaddr *)&p->addr->ss));
set_next(p, error_interval());
return (0);
}
p->reply[p->shift].offset = ((T2 - T1) + (T3 - T4)) / 2;
p->reply[p->shift].delay = (T4 - T1) - (T3 - T2);
p->reply[p->shift].status.stratum = msg.stratum;
if (p->reply[p->shift].delay < 0) {
interval = error_interval();
set_next(p, interval);
log_info("reply from %s: negative delay %fs, "
"next query %llds",
log_sockaddr((struct sockaddr *)&p->addr->ss),
p->reply[p->shift].delay, (long long)interval);
return (0);
}
p->reply[p->shift].error = (T2 - T1) - (T3 - T4);
p->reply[p->shift].rcvd = getmonotime();
p->reply[p->shift].good = 1;
p->reply[p->shift].status.leap = (msg.status & LIMASK);
p->reply[p->shift].status.precision = msg.precision;
p->reply[p->shift].status.rootdelay = sfp_to_d(msg.rootdelay);
p->reply[p->shift].status.rootdispersion = sfp_to_d(msg.dispersion);
p->reply[p->shift].status.refid = msg.refid;
p->reply[p->shift].status.reftime = lfp_to_d(msg.reftime);
p->reply[p->shift].status.poll = msg.ppoll;
if (p->addr->ss.ss_family == AF_INET) {
p->reply[p->shift].status.send_refid =
((struct sockaddr_in *)&p->addr->ss)->sin_addr.s_addr;
} else if (p->addr->ss.ss_family == AF_INET6) {
MD5_CTX context;
u_int8_t digest[MD5_DIGEST_LENGTH];
MD5Init(&context);
MD5Update(&context, ((struct sockaddr_in6 *)&p->addr->ss)->
sin6_addr.s6_addr, sizeof(struct in6_addr));
MD5Final(digest, &context);
memcpy((char *)&p->reply[p->shift].status.send_refid, digest,
sizeof(u_int32_t));
} else
p->reply[p->shift].status.send_refid = msg.xmttime.fractionl;
if (p->trustlevel < TRUSTLEVEL_PATHETIC)
interval = scale_interval(INTERVAL_QUERY_PATHETIC);
else if (p->trustlevel < TRUSTLEVEL_AGGRESSIVE)
interval = (conf->settime && conf->automatic) ?
INTERVAL_QUERY_ULTRA_VIOLENCE :
scale_interval(INTERVAL_QUERY_AGGRESSIVE);
else
interval = scale_interval(INTERVAL_QUERY_NORMAL);
set_next(p, interval);
p->state = STATE_REPLY_RECEIVED;
/* every received reply which we do not discard increases trust */
if (p->trustlevel < TRUSTLEVEL_MAX) {
if (p->trustlevel < TRUSTLEVEL_BADPEER &&
p->trustlevel + 1 >= TRUSTLEVEL_BADPEER)
log_info("peer %s now valid",
log_sockaddr((struct sockaddr *)&p->addr->ss));
p->trustlevel++;
}
log_debug("reply from %s: offset %f delay %f, "
"next query %llds",
log_sockaddr((struct sockaddr *)&p->addr->ss),
p->reply[p->shift].offset, p->reply[p->shift].delay,
(long long)interval);
client_update(p);
if (settime) {
if (automatic)
handle_auto(p->trusted, p->reply[p->shift].offset);
else
priv_settime(p->reply[p->shift].offset, "");
}
if (++p->shift >= OFFSET_ARRAY_SIZE)
p->shift = 0;
return (0);
}
int
client_update(struct ntp_peer *p)
{
int i, best = 0, good = 0;
/*
* clock filter
* find the offset which arrived with the lowest delay
* use that as the peer update
* invalidate it and all older ones
*/
for (i = 0; good == 0 && i < OFFSET_ARRAY_SIZE; i++)
if (p->reply[i].good) {
good++;
best = i;
}
for (; i < OFFSET_ARRAY_SIZE; i++)
if (p->reply[i].good) {
good++;
if (p->reply[i].delay < p->reply[best].delay)
best = i;
}
if (good < 8)
return (-1);
memcpy(&p->update, &p->reply[best], sizeof(p->update));
if (priv_adjtime() == 0) {
for (i = 0; i < OFFSET_ARRAY_SIZE; i++)
if (p->reply[i].rcvd <= p->reply[best].rcvd)
p->reply[i].good = 0;
}
return (0);
}
void
client_log_error(struct ntp_peer *peer, const char *operation, int error)
{
const char *address;
address = log_sockaddr((struct sockaddr *)&peer->addr->ss);
if (peer->lasterror == error) {
log_debug("%s %s: %s", operation, address, strerror(error));
return;
}
peer->lasterror = error;
log_warn("%s %s", operation, address);
}