#!/bin/env python """ URL data extractor Pekka Helenius Requirements: Python 3 Python 3 BeautifulSoup4 (python-beautifulsoup4) Python 3 whois (python-whois; PyPI) Python 3 JSON Schema (python-jsonschema) Python 3 Numpy (python-numpy) Python 3 matplotlib (python-matplotlib) TODO: URL domain part length comparison analysis TODO: URL non-TLD part length comparison analysis - in phishing webpages, URL tends to be much longer than legitimate webpages however, domains themselves tend to be much shorter (without TLD) - phishing URLs often contain more number of dots and subdomains than legitimate URLs - legitimate: robots.txt redirects bots to a legitimate domain rather than to the original phishing domain TODO: Website visual similarity analysis TODO: consistency of RDN usage in HTML data """ ###################################### #%matplotlib notebook import matplotlib.pyplot as plt from bs4 import BeautifulSoup as bs from collections import Counter from datetime import date, datetime import json import os import re import requests from time import sleep import urllib from whois import whois # Target URLs urls = [ "https://hoxhunt.com/", "https://hs.fi", "https://ts.fi", "https://facebook.com" ] # Some web servers may block our request unless we set a widely used, well-known user agent string request_headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.190 Safari/537.36' } # Date format for domain timestamps dateformat = "%Y/%m/%d" # All webpages may not like fetching data too fast # Sleep time in seconds sleep_interval_between_requests = 0.5 # Write JSON results to a file? use_file = True # Full file path + name filename = os.getcwd() + "/" + "url_info.json" # Generate plot from existing JSON data? plot_only = False # Save generated plot images? save_plot_images = True # DPI of plot images plot_images_dpi = 150 # Common link attribute references in various HTML elements link_refs = { 'a': 'href', 'img': 'src', 'script': 'src' } ############################################################################ ############################################################################ class json_url_data(object): # def __init__(self): ###################################### """ Set a new HTTP session and get response. Returns a requests.models.Response object. """ def set_session(self, url, method='get', redirects=True): # HTTP response status codes 1XX, 2XX and 3XX are OK # Treat other codes as errors sc = re.compile(r"^[123]{1}[0-9]{2}") sleep(sleep_interval_between_requests) try: session = requests.Session() response = session.request(method, url, headers=request_headers, allow_redirects=redirects) if not sc.match(str(response.status_code)): raise Exception("Error: got invalid response status from the web server") return response except: raise Exception("Error: HTTP session could not be established. URL: '" + url + "' (method: " + method + ")") from None ###################################### """ Fetch HTML data. Returns a bs4.BeautifulSoup object. """ def get_html_data(self, url): try: data = bs(self.set_session(url).content, 'html.parser') return data except: raise Exception("Error: HTML data could not be retrieved") ###################################### """ Get URL redirects and related HTTP status codes. Returns a list object. """ def get_url_redirects(self, url): response = self.set_session(url) list_data = [] if response.history: for r in response.history: list_data.append({'redirect_url': r.url, 'status': r.status_code}) return list_data ###################################### """ Extract title HTML element contents from given HTML data. Returns a string object. """ def get_webpage_title(self, url): html_data = self.get_html_data(url) title = html_data.title.string return title ###################################### """ Get WHOIS domain data. Returns a dict object. """ def get_whois_data(self, url): dict_data = whois(url) return dict_data ###################################### """ Get domain name based on WHOIS domain data. """ def get_domain_name(self, url): domain_name = self.get_whois_data(url).domain_name if type(domain_name) is list: return domain_name[0].lower() else: return domain_name.lower() ###################################### """ Get initial and final URLs Compare whether the final (destination) URL matches with the initial URL in a request. Returns a dict object. """ def get_startfinal_urls(self, url): response = self.set_session(url) end_url = response.url start_match = False final_match = False # dr = re.compile(r"^([a-z]+://)?([^/]+)") # dr_group_lastindex = dr.match(url).lastindex # domain_name = dr.match(url).group(dr_group_lastindex) domain_name = self.get_domain_name(url) if re.search(domain_name, end_url): final_match = True dict_data = { 'startfinal_urls': { 'start_url': { 'url': url }, 'final_url': { 'url': end_url, 'domain_match': final_match } } } return dict_data ###################################### """ Get domain registrar Returns a dict object. """ def get_domain_registrar(self, url): dict_data = {'domain_registrar': self.get_whois_data(url).registrar } return dict_data ###################################### """ Do comparison between the domain name, extracted from WHOIS domain data and contents of a title HTML element, extracted from HTML data based on a given URL. Returns a dict object. """ def get_domain_title_match(self, url): domain_name = self.get_domain_name(url) title = self.get_webpage_title(url) # If is string: if type(domain_name) is str: if re.search(domain_name, title, re.IGNORECASE): match = True else: match = False # If is list: elif type(domain_name) is list: for d in domain_name: if re.search(d, title, re.IGNORECASE): match = True break else: match = False else: match = False dict_data = { 'webpage_title': title, 'domain_in_webpage_title': match } return dict_data ###################################### """ Get a single timestamp from given data Two scenarios are considered: dates argument is either a list or a string. If it is a list, then we need to decide which date value to extract. Returns a date object. """ def get_single_date(self, dates, newest=False): dates_epoch = [] if type(dates) is list: for d in dates: dates_epoch.append(d.timestamp()) else: dates_epoch.append(dates.timestamp()) return datetime.fromtimestamp(sorted(dates_epoch, reverse=newest)[0]) ###################################### """ Get domain time information based on WHOIS domain data. Returns a dict object. """ def get_domain_timeinfo(self, url): whois_data = self.get_whois_data(url) domain_creation_date = self.get_single_date(whois_data.creation_date, newest = False) domain_updated_date = self.get_single_date(whois_data.updated_date, newest = False) domain_expiration_date = self.get_single_date(whois_data.expiration_date, newest = False) dict_data = { 'domain_timestamps': { 'created': domain_creation_date.strftime(dateformat), 'updated': domain_updated_date.strftime(dateformat), 'expires': domain_expiration_date.strftime(dateformat) } } return dict_data ###################################### """ Get domain time information based on WHOIS domain data, relative to the current date (UTC time). Returns a dict object. """ def get_domain_timeinfo_relative(self, url): date_now = datetime.utcnow() whois_data = self.get_whois_data(url) domain_creation_date = self.get_single_date(whois_data.creation_date, newest = False) domain_updated_date = self.get_single_date(whois_data.updated_date, newest = False) domain_expiration_date = self.get_single_date(whois_data.expiration_date, newest = False) dict_data = { 'domain_timestamps_relative': { 'current_date': (date_now.strftime(dateformat)), 'created_days_ago': (date_now - domain_creation_date).days, 'updated_days_ago': (date_now - domain_updated_date).days, 'expires_days_left': (domain_expiration_date - date_now).days } } return dict_data ###################################### """ Determine whether URL matches syntaxes such as '../foo/bar/' '/foo/../../bar/, 'https://foo.bar/foo/../' etc. Returns a boolean object. """ def is_multidot_url(self, url): multidot = re.compile(r".*[.]{2}/.*") if multidot.match(url): return True return False ###################################### """ Get HTML element data from HTML data contents. Two fetching methods are supported: - A) use only HTML element/tag name and extract raw contents of these tags - B) use both HTML element/tag name and more fine-grained inner attribute name to determine which HTML elements are extracted Special case - URL link references: - attributes 'href' or 'src' are considered as link referrals and they are handled in a special way - A) link referrals to directly to domain are placed in 'self_refs' list (patterns: '/', '#', '../' and '/') - B) link referrals to external domains are placed in 'ext_refs' list (patterns such as 'https://foo.bar.dot/fancysite' etc.) - Both A) and B) link categories have 'normal' and 'multidot' subcategories - normal links do not contain pattern '../' - multidot links contain '../' pattern Returns a dict object. """ def get_tag_data(self, url, tag, attribute=None): html_data = self.get_html_data(url) domain_name = self.get_domain_name(url) data = [] if attribute != None: for d in html_data.find_all(tag): # Ignore the HTML tag if it does not contain our attribute if d.get(attribute) != None: data.append(d.get(attribute)) if attribute == 'href' or attribute == 'src': self_refs = { 'normal': [], 'multidot': []} ext_refs = { 'normal': [], 'multidot': []} # Syntax: '#', '/', '../' rs = re.compile(r"^[/#]|^[.]{2}/.*") # Syntax: ':/' rd = re.compile(r"^[a-z]+:[a-z]+/") # Syntax examples: # 'http://foo.bar/', 'https://foo.bar/, 'foo.bar/', 'https://virus.foo.bar/' rl = re.compile(r"^([a-z]+://)?([^/]*" + domain_name + "/)") for s in data: # Ignore mailto links if re.match("^mailto:", s): continue if rs.match(s) or rl.match(s) or rd.match(s): if self.is_multidot_url(s): self_refs['multidot'].append(s) else: self_refs['normal'].append(s) else: if self.is_multidot_url(s): try: ext_refs['multidot'].append({'url': s, 'registrar': self.get_whois_data(s).registrar }) except: # Fallback if WHOIS query fails ext_refs['normal'].append({'url': s, 'registrar': None }) pass else: try: ext_refs['normal'].append({'url': s, 'registrar': self.get_whois_data(s).registrar }) except: ext_refs['normal'].append({'url': s, 'registrar': None }) pass data = None dict_data = { tag: { attribute + '_ext': (ext_refs), attribute + '_self': (self_refs) } } else: dict_data = { tag: { attribute: (data) } } else: for d in html_data.find_all(tag): data.append(d.prettify()) dict_data = { tag: (data) } return dict_data ###################################### """ How many external URL links have same registrar than the webpage itself? """ def get_registrar_count(self, registrar, urls): i = 0 for u in urls: for k,v in u.items(): if k == 'registrar' and v == registrar: i += 1 o = len(urls) - i dict_data = { 'same_registrar_count': i, 'other_registrar_count': o } return dict_data ###################################### """ Get values existing in a dict object, based on a known key string. Returns a list object. TODO: Major re-work for the fetch function TODO: Support for more sophisticated JSON key string filtering (possibility to use multiple keys for filtering) """ class json_fetcher(object): def __init__(self, dict_data, json_key): self.json_dict = json.loads(json.dumps(dict_data)) self.json_key = json_key ########## # Ref: https://www.codespeedy.com/how-to-loop-through-json-with-subkeys-in-python/ def fetch(self, jdata): if isinstance(jdata, dict): for k,v in jdata.items(): if k == self.json_key: yield v elif isinstance(v, dict): for val in self.fetch(v): yield val elif isinstance(v, list): for l in v: if isinstance(l, dict): for ka,va in l.items(): if ka == self.json_key: yield va elif isinstance(jdata, list): for l in jdata: if isinstance(l, dict): for k,v in l.items(): if k == self.json_key: yield v elif isinstance(l, list): for lb in v: for ka,va in lb.items(): if ka == self.json_key: yield va ########## def get_data(self, flatten=True): data_extract = [] flat_data = [] for i in self.fetch(self.json_dict): data_extract.append(i) # Flatten possible nested lists # (i.e. JSON data contains multiple keys in # different nested sections) def get_data_extract(ld): for l in ld: if isinstance(l, list): for la in get_data_extract(l): yield la else: yield l if flatten == True: for u in get_data_extract(data_extract): flat_data.append(u) return flat_data else: return data_extract ###################################### """ Compile URL related data. """ def get_url_data(self, url): # Dict object for simple, non-nested data data_simple = {} # Pre-defined dict object for specific data sets webpage_data = {} startfinal_url = self.get_startfinal_urls(url) redirect_url = self.get_url_redirects(url) domain_registrar = self.get_domain_registrar(url) domaintitle_match = self.get_domain_title_match(url) domain_time_relative = self.get_domain_timeinfo_relative(url) domain_time = self.get_domain_timeinfo(url) html_element_iframe = self.get_tag_data(url, 'iframe') html_element_a_href = self.get_tag_data(url, 'a', link_refs['a']) html_element_img_src = self.get_tag_data(url, 'img', link_refs['img']) html_element_script_src = self.get_tag_data(url, 'script', link_refs['script']) iframes_count = { 'iframes_count': len(self.json_fetcher(html_element_iframe, 'iframe').get_data()) } multidot_urls_count = { 'multidot_url_count': len(self.json_fetcher(html_element_a_href, 'multidot').get_data()) + len(self.json_fetcher(html_element_img_src, 'multidot').get_data()) + len(self.json_fetcher(html_element_script_src, 'multidot').get_data()) } ################### def get_total_registrars(): same_registrar_counts = 0 other_registrar_counts = 0 for k,v in link_refs.items(): html_element = self.get_tag_data(url, k, v) same_registrar_counts += self.get_registrar_count( domain_registrar['domain_registrar'], html_element[k][v + '_ext']['normal'] )['same_registrar_count'] other_registrar_counts += self.get_registrar_count( domain_registrar['domain_registrar'], html_element[k][v + '_ext']['normal'] )['other_registrar_count'] registrar_counts = { 'same_registrar_count': same_registrar_counts, 'other_registrar_count': other_registrar_counts } return registrar_counts # Avoid unnecessary nesting of the following data data_simple.update(domain_registrar) data_simple.update(domaintitle_match) data_simple.update(iframes_count) data_simple.update(multidot_urls_count) data_simple.update(get_total_registrars()) url_data = dict({ url: [ data_simple, startfinal_url, {'redirects': redirect_url}, domain_time_relative, domain_time, {'webpage_data': [ html_element_iframe, html_element_a_href, html_element_img_src, html_element_script_src ] } ] }) return url_data class write_operations(object): def __init__(self): self.filename = filename ###################################### """ Set JSON file name, append number suffix # if file exists already. Returns file name path. """ def set_filename(self): c = 0 while True: if os.path.exists(self.filename): if c == 0: self.filename = self.filename + "." + str(c) else: self.filename = re.sub("[0-9]+$", str(c), self.filename) else: break c += 1 return self.filename ###################################### """ Append to a JSON file. """ def write_to_file(self, data): try: json_file = open(self.filename, "a") json_file.write(data) json_file.close() return 0 except: return 1 ###################################### """ Fetch all pre-defined URLs. """ def fetch_and_store_url_data(self, urls, use_file): data_parts = {} fetch_json_data = json_url_data() for u in urls: print("Fetching URL data: %s" % u) try: data_parts.update(fetch_json_data.get_url_data(u)) except: print("Failed: %s" % u) pass json_data = json.dumps(data_parts) if use_file == True: self.write_to_file(json_data) return json_data ###################################### """ Visualize & summarize data. """ class data_visualization(object): def __init__(self, url, json_data): self.url = url self.json_data = json_data self.data = json.loads(json.dumps(self.json_data)).get(self.url) self.json_url_obj = json_url_data() self.domain_registrar = self.json_url_obj.get_domain_registrar(self.url)['domain_registrar'] self.webpage_data = self.json_url_obj.json_fetcher(self.data, 'webpage_data').get_data() def get_urls_count_summary(self): unique_refs = [] for k,v in link_refs.items(): if v in unique_refs: continue unique_refs.append(v) def link_count(refs, suffix): urls_cnt = 0 for u in self.webpage_data: for l in refs: urls = self.json_url_obj.json_fetcher(u, l + suffix).get_data() for n in urls: urls_cnt += len(n['normal']) urls_cnt += len(n['multidot']) return urls_cnt data = { 'local_urls': link_count(unique_refs, '_self'), 'external_urls': link_count(unique_refs, '_ext') } return data def get_registrars(self): registrars = [] #registrars.append(self.domain_registrar) for w in self.webpage_data: webpage_registrars = self.json_url_obj.json_fetcher(w, 'registrar').get_data() for wa in webpage_registrars: if wa != None: registrars.append(wa) return registrars def get_registrar_count_summary(self): domain_counter = dict(Counter(self.get_registrars())) data = {'fetched_domains': domain_counter, 'url_domain_registrar': self.domain_registrar } return data ###################################### """ Execute the main program code. TODO: this code must figure out the correct JSON file if multiple generated files are present. """ if __name__ == '__main__': if plot_only == False: write_obj = write_operations() write_obj.set_filename() data = write_obj.fetch_and_store_url_data(urls, use_file) url_str_pattern = re.compile(r"(^[a-z]+://)?([^/]*)") if os.path.exists(filename): with open(filename, "r") as json_file: json_data = json.load(json_file) else: json_data = data # Get URLs from an available JSON data for key_url in json_data.keys(): print("Generating statistics: %s" % key_url) fig = plt.figure() fig_params = { 'xtick.labelsize': 8, 'figure.figsize': [9,8] # 'figure.constrained_layout.use': True } plt.rcParams.update(fig_params) domain_string = url_str_pattern.split(key_url)[2].replace('.','') summary = data_visualization(key_url, json_data) summary_registrars = summary.get_registrar_count_summary()['fetched_domains'] x_r = list(summary_registrars.keys()) y_r = list(summary_registrars.values()) # Show bar values for index,data in enumerate(y_r): plt.text(x=index, y=data+0.5, s=data, fontdict=dict(fontsize=8)) title_r = "Domains associated with HTML URL data (" + key_url + ")" xlabel_r = "Fetched domains" ylabel_r = "Domain count" plt.bar(x_r, y_r, color="green", edgecolor="black") plt.title(title_r) plt.xlabel(xlabel_r) plt.ylabel(ylabel_r) plt.xticks(rotation=45, horizontalalignment="right") if save_plot_images == True: plt.savefig(os.getcwd() + "/" + "domain_figure_" + domain_string + ".png", dpi=plot_images_dpi) plt.show() #fig_u = plt.figure() #summary_urls = summary.get_urls_count_summary() #x_u = list(summary_urls.keys()) #y_u = list(summary_urls.values()) #title_u = "Local and external URL references (" + key_url + ")" #xlabel_u = "Fetched URLs" #ylabel_u = "URL count" #plt.bar(x_u, y_u, color="blue", edgecolor='black') #plt.title(title_u) #plt.xlabel(xlabel_u) #plt.ylabel(ylabel_u) #plt.show()