Browse Source

Different sha1 functions (taken from netinet's if_sha1.c) that

are more consistent with md4/md5 functions.
OPENBSD_2_2
millert 27 years ago
parent
commit
0c044b6e92
2 changed files with 173 additions and 394 deletions
  1. +16
    -50
      src/include/sha1.h
  2. +157
    -344
      src/lib/libc/hash/sha1.c

+ 16
- 50
src/include/sha1.h View File

@ -1,57 +1,23 @@
/* --------------------------------- SHA1.H ------------------------------- */
/* NIST proposed Secure Hash Standard.
Written 2 September 1992, Peter C. Gutmann.
This implementation placed in the public domain.
Comments to pgut1@cs.aukuni.ac.nz */
/* $OpenBSD: sha1.h,v 1.5 1997/07/10 22:53:01 millert Exp $ */
/*
* SHA-1 in C
* By Steve Reid <steve@edmweb.com>
* 100% Public Domain
*/
#ifndef _SHA1_H
#define _SHA1_H
/* The SHA1 block size and message digest sizes, in bytes */
#define SHA1_BLOCKSIZE 64
#define SHA1_DIGESTSIZE 20
/* The structure for storing SHA1 info */
typedef struct {
u_int32_t digest[ 5 ]; /* Message digest */
u_int32_t countLo, countHi; /* 64-bit bit count */
u_int32_t data[ 16 ]; /* SHA1 data buffer */
} SHA1_INFO;
/* The next def turns on the change to the algorithm introduced by NIST at
* the behest of the NSA. It supposedly corrects a weakness in the original
* formulation. Bruce Schneier described it thus in a posting to the
* Cypherpunks mailing list on June 21, 1994 (as told to us by Steve Bellovin):
*
* This is the fix to the Secure Hash Standard, NIST FIPS PUB 180:
*
* In Section 7 of FIPS 180 (page 9), the line which reads
*
* "b) For t=16 to 79 let Wt = Wt-3 XOR Wt-8 XOR Wt-14 XOR
* Wt-16."
*
* is to be replaced by
*
* "b) For t=16 to 79 let Wt = S1(Wt-3 XOR Wt-8 XOR Wt-14 XOR
* Wt-16)."
*
* where S1 is a left circular shift by one bit as defined in
* Section 3 of FIPS 180 (page 6):
*
* S1(X) = (X<<1) OR (X>>31).
*
*/
#define NEW_SHA1
void sha1Init __P((SHA1_INFO *));
void sha1Transform __P((SHA1_INFO *));
void sha1Final __P((SHA1_INFO *));
void sha1Update __P((SHA1_INFO *, unsigned char *, int));
void sha1ByteReverse __P((u_int32_t *, int));
u_int32_t state[5];
u_int32_t count[2];
u_char buffer[64];
} SHA1_CTX;
void SHA1Transform __P((u_int32_t state[5], unsigned char buffer[64]));
void SHA1Init __P((SHA1_CTX* context));
void SHA1Update __P((SHA1_CTX* context, unsigned char* data, unsigned int len));
void SHA1Final __P((unsigned char digest[20], SHA1_CTX* context));
#endif /* _SHA1_H */

+ 157
- 344
src/lib/libc/hash/sha1.c View File

@ -1,365 +1,178 @@
#if defined(LIBC_SCCS) && !defined(lint)
static char rcsid[] = "$OpenBSD: sha1.c,v 1.4 1996/09/30 23:27:05 millert Exp $";
#endif /* LIBC_SCCS and not lint */
/* $OpenBSD: sha1.c,v 1.5 1997/07/10 22:52:59 millert Exp $ */
/*
* sha1.c
*
* signature function hook for SHA1.
*
* Gene Kim
* Purdue University
* August 10, 1993
* SHA-1 in C
* By Steve Reid <steve@edmweb.com>
* 100% Public Domain
*
* Test Vectors (from FIPS PUB 180-1)
* "abc"
* A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
* "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
* 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
* A million repetitions of "a"
* 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
*/
/* --------------------------------- SHA1.C ------------------------------- */
#define SHA1HANDSOFF /* Copies data before messing with it. */
/* NIST proposed Secure Hash Standard.
Written 2 September 1992, Peter C. Gutmann.
This implementation placed in the public domain.
Comments to pgut1@cs.aukuni.ac.nz */
#include <stdio.h>
#include <stdlib.h>
#include <sys/param.h>
#include <string.h>
#include <sys/types.h>
#include <sha1.h>
#ifdef TEST
#include <time.h>
#endif
/* Useful defines/typedefs */
typedef unsigned char BYTE;
typedef u_int32_t LONG;
/* The SHA1 f()-functions */
#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) /* Rounds 0-19 */
#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) /* Rounds 40-59 */
#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
/* The SHA1 Mysterious Constants */
#define K1 0x5A827999L /* Rounds 0-19 */
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
#define K4 0xCA62C1D6L /* Rounds 60-79 */
/* SHA1 initial values */
#include "sha1.h"
#define h0init 0x67452301L
#define h1init 0xEFCDAB89L
#define h2init 0x98BADCFEL
#define h3init 0x10325476L
#define h4init 0xC3D2E1F0L
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
/* 32-bit rotate - kludged with shifts */
#define S(n,X) ( ( X << n ) | ( X >> ( 32 - n ) ) )
/* The initial expanding function */
#ifdef NEW_SHA1
#define expand(count) temp = W[ count - 3 ] ^ W[ count - 8 ] ^ W[ count - 14 ] ^ W[ count - 16 ];W[ count ] = S(1, temp)
/*
* blk0() and blk() perform the initial expand.
* I got the idea of expanding during the round function from SSLeay
*/
#if BYTE_ORDER == LITTLE_ENDIAN
# define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
|(rol(block->l[i],8)&0x00FF00FF))
#else
#define expand(count) W[ count ] = W[ count - 3 ] ^ W[ count - 8 ] ^ W[ count - 14 ] ^ W[ count - 16 ]
# define blk0(i) block->l[i]
#endif
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
^block->l[(i+2)&15]^block->l[i&15],1))
/* The four SHA1 sub-rounds */
#define subRound1(count) \
{ \
temp = S( 5, A ) + f1( B, C, D ) + E + W[ count ] + K1; \
E = D; \
D = C; \
C = S( 30, B ); \
B = A; \
A = temp; \
}
#define subRound2(count) \
{ \
temp = S( 5, A ) + f2( B, C, D ) + E + W[ count ] + K2; \
E = D; \
D = C; \
C = S( 30, B ); \
B = A; \
A = temp; \
}
#define subRound3(count) \
{ \
temp = S( 5, A ) + f3( B, C, D ) + E + W[ count ] + K3; \
E = D; \
D = C; \
C = S( 30, B ); \
B = A; \
A = temp; \
}
#define subRound4(count) \
{ \
temp = S( 5, A ) + f4( B, C, D ) + E + W[ count ] + K4; \
E = D; \
D = C; \
C = S( 30, B ); \
B = A; \
A = temp; \
}
/* The two buffers of 5 32-bit words */
LONG h0, h1, h2, h3, h4;
LONG A, B, C, D, E;
/* Initialize the SHA1 values */
void sha1Init(sha1Info)
SHA1_INFO *sha1Info;
{
/* Set the h-vars to their initial values */
sha1Info->digest[ 0 ] = h0init;
sha1Info->digest[ 1 ] = h1init;
sha1Info->digest[ 2 ] = h2init;
sha1Info->digest[ 3 ] = h3init;
sha1Info->digest[ 4 ] = h4init;
/* Initialise bit count */
sha1Info->countLo = sha1Info->countHi = 0L;
}
/* Perform the SHA1 transformation. Note that this code, like MD5, seems to
break some optimizing compilers - it may be necessary to split it into
sections, eg based on the four subrounds */
void sha1Transform(sha1Info)
SHA1_INFO *sha1Info;
{
LONG W[ 80 ], temp;
int i;
/* Step A. Copy the data buffer into the local work buffer */
for( i = 0; i < 16; i++ )
W[ i ] = sha1Info->data[ i ];
/* Step B. Expand the 16 words into 64 temporary data words */
expand( 16 ); expand( 17 ); expand( 18 ); expand( 19 ); expand( 20 );
expand( 21 ); expand( 22 ); expand( 23 ); expand( 24 ); expand( 25 );
expand( 26 ); expand( 27 ); expand( 28 ); expand( 29 ); expand( 30 );
expand( 31 ); expand( 32 ); expand( 33 ); expand( 34 ); expand( 35 );
expand( 36 ); expand( 37 ); expand( 38 ); expand( 39 ); expand( 40 );
expand( 41 ); expand( 42 ); expand( 43 ); expand( 44 ); expand( 45 );
expand( 46 ); expand( 47 ); expand( 48 ); expand( 49 ); expand( 50 );
expand( 51 ); expand( 52 ); expand( 53 ); expand( 54 ); expand( 55 );
expand( 56 ); expand( 57 ); expand( 58 ); expand( 59 ); expand( 60 );
expand( 61 ); expand( 62 ); expand( 63 ); expand( 64 ); expand( 65 );
expand( 66 ); expand( 67 ); expand( 68 ); expand( 69 ); expand( 70 );
expand( 71 ); expand( 72 ); expand( 73 ); expand( 74 ); expand( 75 );
expand( 76 ); expand( 77 ); expand( 78 ); expand( 79 );
/* Step C. Set up first buffer */
A = sha1Info->digest[ 0 ];
B = sha1Info->digest[ 1 ];
C = sha1Info->digest[ 2 ];
D = sha1Info->digest[ 3 ];
E = sha1Info->digest[ 4 ];
/* Step D. Serious mangling, divided into four sub-rounds */
subRound1( 0 ); subRound1( 1 ); subRound1( 2 ); subRound1( 3 );
subRound1( 4 ); subRound1( 5 ); subRound1( 6 ); subRound1( 7 );
subRound1( 8 ); subRound1( 9 ); subRound1( 10 ); subRound1( 11 );
subRound1( 12 ); subRound1( 13 ); subRound1( 14 ); subRound1( 15 );
subRound1( 16 ); subRound1( 17 ); subRound1( 18 ); subRound1( 19 );
subRound2( 20 ); subRound2( 21 ); subRound2( 22 ); subRound2( 23 );
subRound2( 24 ); subRound2( 25 ); subRound2( 26 ); subRound2( 27 );
subRound2( 28 ); subRound2( 29 ); subRound2( 30 ); subRound2( 31 );
subRound2( 32 ); subRound2( 33 ); subRound2( 34 ); subRound2( 35 );
subRound2( 36 ); subRound2( 37 ); subRound2( 38 ); subRound2( 39 );
subRound3( 40 ); subRound3( 41 ); subRound3( 42 ); subRound3( 43 );
subRound3( 44 ); subRound3( 45 ); subRound3( 46 ); subRound3( 47 );
subRound3( 48 ); subRound3( 49 ); subRound3( 50 ); subRound3( 51 );
subRound3( 52 ); subRound3( 53 ); subRound3( 54 ); subRound3( 55 );
subRound3( 56 ); subRound3( 57 ); subRound3( 58 ); subRound3( 59 );
subRound4( 60 ); subRound4( 61 ); subRound4( 62 ); subRound4( 63 );
subRound4( 64 ); subRound4( 65 ); subRound4( 66 ); subRound4( 67 );
subRound4( 68 ); subRound4( 69 ); subRound4( 70 ); subRound4( 71 );
subRound4( 72 ); subRound4( 73 ); subRound4( 74 ); subRound4( 75 );
subRound4( 76 ); subRound4( 77 ); subRound4( 78 ); subRound4( 79 );
/* Step E. Build message digest */
sha1Info->digest[ 0 ] += A;
sha1Info->digest[ 1 ] += B;
sha1Info->digest[ 2 ] += C;
sha1Info->digest[ 3 ] += D;
sha1Info->digest[ 4 ] += E;
}
#if BYTE_ORDER == LITTLE_ENDIAN
/* When run on a little-endian CPU we need to perform byte reversal on an
array of longwords. It is possible to make the code endianness-
independant by fiddling around with data at the byte level, but this
makes for very slow code, so we rely on the user to sort out endianness
at compile time */
void sha1ByteReverse(buffer, byteCount)
LONG *buffer;
int byteCount;
{
LONG value;
int count;
/*
* (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
*/
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
/* Hash a single 512-bit block. This is the core of the algorithm. */
void SHA1Transform(state, buffer)
u_int32_t state[5];
u_char buffer[64];
{
u_int32_t a, b, c, d, e;
typedef union {
u_char c[64];
u_int l[16];
} CHAR64LONG16;
CHAR64LONG16* block;
#ifdef SHA1HANDSOFF
static u_char workspace[64];
block = (CHAR64LONG16*)workspace;
memcpy(block, buffer, 64);
#else
block = (CHAR64LONG16*)buffer;
#endif
byteCount /= sizeof( LONG );
for( count = 0; count < byteCount; count++ )
{
value = ( buffer[ count ] << 16 ) | ( buffer[ count ] >> 16 );
buffer[ count ] = ( ( value & 0xFF00FF00L ) >> 8 ) | ( ( value & 0x00FF00FFL ) << 8 );
}
}
#endif /* LITTLE_ENDIAN */
/* Copy context->state[] to working vars */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
/* Wipe variables */
a = b = c = d = e = 0;
}
/* Update SHA1 for a block of data. This code assumes that the buffer size
is a multiple of SHA1_BLOCKSIZE bytes long, which makes the code a lot
more efficient since it does away with the need to handle partial blocks
between calls to sha1Update() */
void sha1Update(sha1Info, buffer, count)
SHA1_INFO *sha1Info;
BYTE *buffer;
int count;
{
/* Update bitcount */
if( ( sha1Info->countLo + ( ( LONG ) count << 3 ) ) < sha1Info->countLo )
sha1Info->countHi++; /* Carry from low to high bitCount */
sha1Info->countLo += ( ( LONG ) count << 3 );
sha1Info->countHi += ( ( LONG ) count >> 29 );
/*
* SHA1Init - Initialize new context
*/
void SHA1Init(context)
SHA1_CTX *context;
{
/* SHA1 initialization constants */
context->state[0] = 0x67452301;
context->state[1] = 0xEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[3] = 0x10325476;
context->state[4] = 0xC3D2E1F0;
context->count[0] = context->count[1] = 0;
}
/* Process data in SHA1_BLOCKSIZE chunks */
while( count >= SHA1_BLOCKSIZE )
{
memcpy( (void *) sha1Info->data, (void *) buffer, SHA1_BLOCKSIZE );
#if BYTE_ORDER == LITTLE_ENDIAN
sha1ByteReverse( sha1Info->data, SHA1_BLOCKSIZE );
#endif /* LITTLE_ENDIAN */
sha1Transform( sha1Info );
buffer += SHA1_BLOCKSIZE;
count -= SHA1_BLOCKSIZE;
}
/* Handle any remaining bytes of data. This should only happen once
on the final lot of data */
memcpy( (void *) sha1Info->data, (void *) buffer, count );
/*
* Run your data through this.
*/
void SHA1Update(context, data, len)
SHA1_CTX *context;
u_char *data;
u_int len;
{
u_int i;
u_int j;
j = context->count[0];
if ((context->count[0] += len << 3) < j)
context->count[1] += (len>>29)+1;
j = (j >> 3) & 63;
if ((j + len) > 63) {
memcpy(&context->buffer[j], data, (i = 64-j));
SHA1Transform(context->state, context->buffer);
for ( ; i + 63 < len; i += 64)
SHA1Transform(context->state, &data[i]);
j = 0;
} else {
i = 0;
}
memcpy(&context->buffer[j], &data[i], len - i);
}
void sha1Final(sha1Info)
SHA1_INFO *sha1Info;
{
int count;
LONG lowBitcount = sha1Info->countLo, highBitcount = sha1Info->countHi;
/* Compute number of bytes mod 64 */
count = ( int ) ( ( sha1Info->countLo >> 3 ) & 0x3F );
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
( ( BYTE * ) sha1Info->data )[ count++ ] = 0x80;
/* Pad out to 56 mod 64 */
if( count > 56 )
{
/* Two lots of padding: Pad the first block to 64 bytes */
memset( ( char * ) sha1Info->data + count, 0, 64 - count );
#if BYTE_ORDER == LITTLE_ENDIAN
sha1ByteReverse( sha1Info->data, SHA1_BLOCKSIZE );
#endif /* LITTLE_ENDIAN */
sha1Transform( sha1Info );
/* Now fill the next block with 56 bytes */
memset( (void *) sha1Info->data, 0, 56 );
}
else
/* Pad block to 56 bytes */
memset( ( char * ) sha1Info->data + count, 0, 56 - count );
#if BYTE_ORDER == LITTLE_ENDIAN
sha1ByteReverse( sha1Info->data, SHA1_BLOCKSIZE );
#endif /* LITTLE_ENDIAN */
/* Append length in bits and transform */
sha1Info->data[ 14 ] = highBitcount;
sha1Info->data[ 15 ] = lowBitcount;
sha1Transform( sha1Info );
#if BYTE_ORDER == LITTLE_ENDIAN
sha1ByteReverse( sha1Info->data, SHA1_DIGESTSIZE );
#endif /* LITTLE_ENDIAN */
/*
* Add padding and return the message digest.
*/
void SHA1Final(digest, context)
u_char digest[20];
SHA1_CTX* context;
{
u_int i;
u_char finalcount[8];
for (i = 0; i < 8; i++) {
finalcount[i] = (u_char)((context->count[(i >= 4 ? 0 : 1)]
>> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
}
#ifdef TEST
/* ----------------------------- SHA1 Test code --------------------------- */
/* Size of buffer for SHA1 speed test data */
#define TEST_BLOCK_SIZE ( SHA1_DIGESTSIZE * 100 )
/* Number of bytes of test data to process */
#define TEST_BYTES 10000000L
#define TEST_BLOCKS ( TEST_BYTES / TEST_BLOCK_SIZE )
void main()
{
SHA1_INFO sha1Info;
time_t endTime, startTime;
BYTE data[ TEST_BLOCK_SIZE ];
long i;
/* Test output data (this is the only test data given in the SHA1
document, but chances are if it works for this it'll work for
anything) */
sha1Init( &sha1Info );
sha1Update( &sha1Info, ( BYTE * ) "abc", 3 );
sha1Final( &sha1Info );
#ifdef NEW_SHA1
if( sha1Info.digest[ 0 ] != 0xA9993E36L ||
sha1Info.digest[ 1 ] != 0x4706816AL ||
sha1Info.digest[ 2 ] != 0xBA3E2571L ||
sha1Info.digest[ 3 ] != 0x7850C26CL ||
sha1Info.digest[ 4 ] != 0x9CD0D89DL )
#else
if( sha1Info.digest[ 0 ] != 0x0164B8A9L ||
sha1Info.digest[ 1 ] != 0x14CD2A5EL ||
sha1Info.digest[ 2 ] != 0x74C4F7FFL ||
sha1Info.digest[ 3 ] != 0x082C4D97L ||
sha1Info.digest[ 4 ] != 0xF1EDF880L )
#endif
{
puts( "Error in SHA1 implementation" );
exit( -1 );
}
/* Now perform time trial, generating MD for 10MB of data. First,
initialize the test data */
memset( ( void * ) data, 0, TEST_BLOCK_SIZE );
/* Get start time */
printf( "SHA1 time trial. Processing %ld characters...\n", TEST_BYTES );
time( &startTime );
/* Calculate SHA1 message digest in TEST_BLOCK_SIZE byte blocks */
sha1Init( &sha1Info );
for( i = TEST_BLOCKS; i > 0; i-- )
sha1Update( &sha1Info, data, TEST_BLOCK_SIZE );
sha1Final( &sha1Info );
/* Get finish time and time difference */
time( &endTime );
printf( "Seconds to process test input: %ld\n", endTime - startTime );
printf( "Characters processed per second: %ld\n", TEST_BYTES / ( endTime - startTime ) );
SHA1Update(context, (u_char *)"\200", 1);
while ((context->count[0] & 504) != 448)
SHA1Update(context, (u_char *)"\0", 1);
SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
if (digest) {
for (i = 0; i < 20; i++)
digest[i] = (u_char)
((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
}
#endif
}

Loading…
Cancel
Save