|
|
@ -0,0 +1,895 @@ |
|
|
|
/* $OpenBSD: sha2.c,v 1.1 2003/05/08 23:34:55 millert Exp $ */ |
|
|
|
|
|
|
|
/* |
|
|
|
* FILE: sha2.c |
|
|
|
* AUTHOR: Aaron D. Gifford <me@aarongifford.com> |
|
|
|
* |
|
|
|
* Copyright (c) 2000-2001, Aaron D. Gifford |
|
|
|
* All rights reserved. |
|
|
|
* |
|
|
|
* Redistribution and use in source and binary forms, with or without |
|
|
|
* modification, are permitted provided that the following conditions |
|
|
|
* are met: |
|
|
|
* 1. Redistributions of source code must retain the above copyright |
|
|
|
* notice, this list of conditions and the following disclaimer. |
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
|
|
* notice, this list of conditions and the following disclaimer in the |
|
|
|
* documentation and/or other materials provided with the distribution. |
|
|
|
* 3. Neither the name of the copyright holder nor the names of contributors |
|
|
|
* may be used to endorse or promote products derived from this software |
|
|
|
* without specific prior written permission. |
|
|
|
* |
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND |
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE |
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
|
|
* SUCH DAMAGE. |
|
|
|
* |
|
|
|
* $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ |
|
|
|
*/ |
|
|
|
|
|
|
|
#if defined(LIBC_SCCS) && !defined(lint) |
|
|
|
static const char rcsid[] = "$OpenBSD: sha2.c,v 1.1 2003/05/08 23:34:55 millert Exp $"; |
|
|
|
#endif /* LIBC_SCCS and not lint */ |
|
|
|
|
|
|
|
#include <sys/types.h> |
|
|
|
|
|
|
|
#include <string.h> |
|
|
|
#include <sha2.h> |
|
|
|
|
|
|
|
/* |
|
|
|
* UNROLLED TRANSFORM LOOP NOTE: |
|
|
|
* You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform |
|
|
|
* loop version for the hash transform rounds (defined using macros |
|
|
|
* later in this file). Either define on the command line, for example: |
|
|
|
* |
|
|
|
* cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c |
|
|
|
* |
|
|
|
* or define below: |
|
|
|
* |
|
|
|
* #define SHA2_UNROLL_TRANSFORM |
|
|
|
* |
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
|
|
/*** SHA-256/384/512 Machine Architecture Definitions *****************/ |
|
|
|
/* |
|
|
|
* BYTE_ORDER NOTE: |
|
|
|
* |
|
|
|
* Please make sure that your system defines BYTE_ORDER. If your |
|
|
|
* architecture is little-endian, make sure it also defines |
|
|
|
* LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are |
|
|
|
* equivilent. |
|
|
|
* |
|
|
|
* If your system does not define the above, then you can do so by |
|
|
|
* hand like this: |
|
|
|
* |
|
|
|
* #define LITTLE_ENDIAN 1234 |
|
|
|
* #define BIG_ENDIAN 4321 |
|
|
|
* |
|
|
|
* And for little-endian machines, add: |
|
|
|
* |
|
|
|
* #define BYTE_ORDER LITTLE_ENDIAN |
|
|
|
* |
|
|
|
* Or for big-endian machines: |
|
|
|
* |
|
|
|
* #define BYTE_ORDER BIG_ENDIAN |
|
|
|
* |
|
|
|
* The FreeBSD machine this was written on defines BYTE_ORDER |
|
|
|
* appropriately by including <sys/types.h> (which in turn includes |
|
|
|
* <machine/endian.h> where the appropriate definitions are actually |
|
|
|
* made). |
|
|
|
*/ |
|
|
|
#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) |
|
|
|
#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN |
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
/*** SHA-256/384/512 Various Length Definitions ***********************/ |
|
|
|
/* NOTE: Most of these are in sha2.h */ |
|
|
|
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) |
|
|
|
#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) |
|
|
|
#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) |
|
|
|
|
|
|
|
|
|
|
|
/*** ENDIAN REVERSAL MACROS *******************************************/ |
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
|
|
|
#define REVERSE32(w,x) { \ |
|
|
|
u_int32_t tmp = (w); \ |
|
|
|
tmp = (tmp >> 16) | (tmp << 16); \ |
|
|
|
(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ |
|
|
|
} |
|
|
|
#define REVERSE64(w,x) { \ |
|
|
|
u_int64_t tmp = (w); \ |
|
|
|
tmp = (tmp >> 32) | (tmp << 32); \ |
|
|
|
tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ |
|
|
|
((tmp & 0x00ff00ff00ff00ffULL) << 8); \ |
|
|
|
(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ |
|
|
|
((tmp & 0x0000ffff0000ffffULL) << 16); \ |
|
|
|
} |
|
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */ |
|
|
|
|
|
|
|
/* |
|
|
|
* Macro for incrementally adding the unsigned 64-bit integer n to the |
|
|
|
* unsigned 128-bit integer (represented using a two-element array of |
|
|
|
* 64-bit words): |
|
|
|
*/ |
|
|
|
#define ADDINC128(w,n) { \ |
|
|
|
(w)[0] += (u_int64_t)(n); \ |
|
|
|
if ((w)[0] < (n)) { \ |
|
|
|
(w)[1]++; \ |
|
|
|
} \ |
|
|
|
} |
|
|
|
|
|
|
|
/*** THE SIX LOGICAL FUNCTIONS ****************************************/ |
|
|
|
/* |
|
|
|
* Bit shifting and rotation (used by the six SHA-XYZ logical functions: |
|
|
|
* |
|
|
|
* NOTE: The naming of R and S appears backwards here (R is a SHIFT and |
|
|
|
* S is a ROTATION) because the SHA-256/384/512 description document |
|
|
|
* (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this |
|
|
|
* same "backwards" definition. |
|
|
|
*/ |
|
|
|
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ |
|
|
|
#define R(b,x) ((x) >> (b)) |
|
|
|
/* 32-bit Rotate-right (used in SHA-256): */ |
|
|
|
#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) |
|
|
|
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ |
|
|
|
#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) |
|
|
|
|
|
|
|
/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ |
|
|
|
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) |
|
|
|
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
|
|
|
|
|
|
|
/* Four of six logical functions used in SHA-256: */ |
|
|
|
#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) |
|
|
|
#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) |
|
|
|
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) |
|
|
|
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) |
|
|
|
|
|
|
|
/* Four of six logical functions used in SHA-384 and SHA-512: */ |
|
|
|
#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) |
|
|
|
#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) |
|
|
|
#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) |
|
|
|
#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) |
|
|
|
|
|
|
|
/*** INTERNAL FUNCTION PROTOTYPES *************************************/ |
|
|
|
/* NOTE: These should not be accessed directly from outside this |
|
|
|
* library -- they are intended for private internal visibility/use |
|
|
|
* only. |
|
|
|
*/ |
|
|
|
void SHA512_Last(SHA512_CTX *); |
|
|
|
void SHA256_Transform(SHA256_CTX *, const u_int32_t *); |
|
|
|
void SHA512_Transform(SHA512_CTX *, const u_int64_t *); |
|
|
|
|
|
|
|
|
|
|
|
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ |
|
|
|
/* Hash constant words K for SHA-256: */ |
|
|
|
const static u_int32_t K256[64] = { |
|
|
|
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, |
|
|
|
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, |
|
|
|
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, |
|
|
|
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, |
|
|
|
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
|
|
|
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, |
|
|
|
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, |
|
|
|
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, |
|
|
|
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, |
|
|
|
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
|
|
|
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, |
|
|
|
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, |
|
|
|
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, |
|
|
|
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, |
|
|
|
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
|
|
|
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
|
|
|
}; |
|
|
|
|
|
|
|
/* Initial hash value H for SHA-256: */ |
|
|
|
const static u_int32_t sha256_initial_hash_value[8] = { |
|
|
|
0x6a09e667UL, |
|
|
|
0xbb67ae85UL, |
|
|
|
0x3c6ef372UL, |
|
|
|
0xa54ff53aUL, |
|
|
|
0x510e527fUL, |
|
|
|
0x9b05688cUL, |
|
|
|
0x1f83d9abUL, |
|
|
|
0x5be0cd19UL |
|
|
|
}; |
|
|
|
|
|
|
|
/* Hash constant words K for SHA-384 and SHA-512: */ |
|
|
|
const static u_int64_t K512[80] = { |
|
|
|
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, |
|
|
|
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, |
|
|
|
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, |
|
|
|
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, |
|
|
|
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, |
|
|
|
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, |
|
|
|
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, |
|
|
|
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, |
|
|
|
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, |
|
|
|
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, |
|
|
|
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, |
|
|
|
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, |
|
|
|
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, |
|
|
|
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, |
|
|
|
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, |
|
|
|
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, |
|
|
|
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, |
|
|
|
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, |
|
|
|
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, |
|
|
|
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, |
|
|
|
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, |
|
|
|
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, |
|
|
|
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, |
|
|
|
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, |
|
|
|
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, |
|
|
|
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, |
|
|
|
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, |
|
|
|
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, |
|
|
|
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, |
|
|
|
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, |
|
|
|
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, |
|
|
|
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, |
|
|
|
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, |
|
|
|
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, |
|
|
|
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, |
|
|
|
0x113f9804bef90daeULL, 0x1b710b35131c471bULL, |
|
|
|
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, |
|
|
|
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, |
|
|
|
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, |
|
|
|
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL |
|
|
|
}; |
|
|
|
|
|
|
|
/* Initial hash value H for SHA-384 */ |
|
|
|
const static u_int64_t sha384_initial_hash_value[8] = { |
|
|
|
0xcbbb9d5dc1059ed8ULL, |
|
|
|
0x629a292a367cd507ULL, |
|
|
|
0x9159015a3070dd17ULL, |
|
|
|
0x152fecd8f70e5939ULL, |
|
|
|
0x67332667ffc00b31ULL, |
|
|
|
0x8eb44a8768581511ULL, |
|
|
|
0xdb0c2e0d64f98fa7ULL, |
|
|
|
0x47b5481dbefa4fa4ULL |
|
|
|
}; |
|
|
|
|
|
|
|
/* Initial hash value H for SHA-512 */ |
|
|
|
const static u_int64_t sha512_initial_hash_value[8] = { |
|
|
|
0x6a09e667f3bcc908ULL, |
|
|
|
0xbb67ae8584caa73bULL, |
|
|
|
0x3c6ef372fe94f82bULL, |
|
|
|
0xa54ff53a5f1d36f1ULL, |
|
|
|
0x510e527fade682d1ULL, |
|
|
|
0x9b05688c2b3e6c1fULL, |
|
|
|
0x1f83d9abfb41bd6bULL, |
|
|
|
0x5be0cd19137e2179ULL |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
/*** SHA-256: *********************************************************/ |
|
|
|
void SHA256_Init(SHA256_CTX *context) { |
|
|
|
if (context == (SHA256_CTX *)0) { |
|
|
|
return; |
|
|
|
} |
|
|
|
memcpy(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH); |
|
|
|
memset(context->buffer, 0, SHA256_BLOCK_LENGTH); |
|
|
|
context->bitcount = 0; |
|
|
|
} |
|
|
|
|
|
|
|
#ifdef SHA2_UNROLL_TRANSFORM |
|
|
|
|
|
|
|
/* Unrolled SHA-256 round macros: */ |
|
|
|
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
|
|
|
|
|
|
|
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ |
|
|
|
REVERSE32(*data++, W256[j]); \ |
|
|
|
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ |
|
|
|
K256[j] + W256[j]; \ |
|
|
|
(d) += T1; \ |
|
|
|
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ |
|
|
|
j++ |
|
|
|
|
|
|
|
|
|
|
|
#else /* BYTE_ORDER == LITTLE_ENDIAN */ |
|
|
|
|
|
|
|
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ |
|
|
|
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ |
|
|
|
K256[j] + (W256[j] = *data++); \ |
|
|
|
(d) += T1; \ |
|
|
|
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ |
|
|
|
j++ |
|
|
|
|
|
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */ |
|
|
|
|
|
|
|
#define ROUND256(a,b,c,d,e,f,g,h) \ |
|
|
|
s0 = W256[(j+1)&0x0f]; \ |
|
|
|
s0 = sigma0_256(s0); \ |
|
|
|
s1 = W256[(j+14)&0x0f]; \ |
|
|
|
s1 = sigma1_256(s1); \ |
|
|
|
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ |
|
|
|
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ |
|
|
|
(d) += T1; \ |
|
|
|
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ |
|
|
|
j++ |
|
|
|
|
|
|
|
void SHA256_Transform(SHA256_CTX *context, const u_int32_t *data) { |
|
|
|
u_int32_t a, b, c, d, e, f, g, h, s0, s1; |
|
|
|
u_int32_t T1, *W256; |
|
|
|
int j; |
|
|
|
|
|
|
|
W256 = (u_int32_t *)context->buffer; |
|
|
|
|
|
|
|
/* Initialize registers with the prev. intermediate value */ |
|
|
|
a = context->state[0]; |
|
|
|
b = context->state[1]; |
|
|
|
c = context->state[2]; |
|
|
|
d = context->state[3]; |
|
|
|
e = context->state[4]; |
|
|
|
f = context->state[5]; |
|
|
|
g = context->state[6]; |
|
|
|
h = context->state[7]; |
|
|
|
|
|
|
|
j = 0; |
|
|
|
do { |
|
|
|
/* Rounds 0 to 15 (unrolled): */ |
|
|
|
ROUND256_0_TO_15(a,b,c,d,e,f,g,h); |
|
|
|
ROUND256_0_TO_15(h,a,b,c,d,e,f,g); |
|
|
|
ROUND256_0_TO_15(g,h,a,b,c,d,e,f); |
|
|
|
ROUND256_0_TO_15(f,g,h,a,b,c,d,e); |
|
|
|
ROUND256_0_TO_15(e,f,g,h,a,b,c,d); |
|
|
|
ROUND256_0_TO_15(d,e,f,g,h,a,b,c); |
|
|
|
ROUND256_0_TO_15(c,d,e,f,g,h,a,b); |
|
|
|
ROUND256_0_TO_15(b,c,d,e,f,g,h,a); |
|
|
|
} while (j < 16); |
|
|
|
|
|
|
|
/* Now for the remaining rounds to 64: */ |
|
|
|
do { |
|
|
|
ROUND256(a,b,c,d,e,f,g,h); |
|
|
|
ROUND256(h,a,b,c,d,e,f,g); |
|
|
|
ROUND256(g,h,a,b,c,d,e,f); |
|
|
|
ROUND256(f,g,h,a,b,c,d,e); |
|
|
|
ROUND256(e,f,g,h,a,b,c,d); |
|
|
|
ROUND256(d,e,f,g,h,a,b,c); |
|
|
|
ROUND256(c,d,e,f,g,h,a,b); |
|
|
|
ROUND256(b,c,d,e,f,g,h,a); |
|
|
|
} while (j < 64); |
|
|
|
|
|
|
|
/* Compute the current intermediate hash value */ |
|
|
|
context->state[0] += a; |
|
|
|
context->state[1] += b; |
|
|
|
context->state[2] += c; |
|
|
|
context->state[3] += d; |
|
|
|
context->state[4] += e; |
|
|
|
context->state[5] += f; |
|
|
|
context->state[6] += g; |
|
|
|
context->state[7] += h; |
|
|
|
|
|
|
|
/* Clean up */ |
|
|
|
a = b = c = d = e = f = g = h = T1 = 0; |
|
|
|
} |
|
|
|
|
|
|
|
#else /* SHA2_UNROLL_TRANSFORM */ |
|
|
|
|
|
|
|
void SHA256_Transform(SHA256_CTX *context, const u_int32_t *data) { |
|
|
|
u_int32_t a, b, c, d, e, f, g, h, s0, s1; |
|
|
|
u_int32_t T1, T2, *W256; |
|
|
|
int j; |
|
|
|
|
|
|
|
W256 = (u_int32_t *)context->buffer; |
|
|
|
|
|
|
|
/* Initialize registers with the prev. intermediate value */ |
|
|
|
a = context->state[0]; |
|
|
|
b = context->state[1]; |
|
|
|
c = context->state[2]; |
|
|
|
d = context->state[3]; |
|
|
|
e = context->state[4]; |
|
|
|
f = context->state[5]; |
|
|
|
g = context->state[6]; |
|
|
|
h = context->state[7]; |
|
|
|
|
|
|
|
j = 0; |
|
|
|
do { |
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
|
|
|
/* Copy data while converting to host byte order */ |
|
|
|
REVERSE32(*data++, W256[j]); |
|
|
|
/* Apply the SHA-256 compression function to update a..h */ |
|
|
|
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; |
|
|
|
#else /* BYTE_ORDER == LITTLE_ENDIAN */ |
|
|
|
/* Apply the SHA-256 compression function to update a..h with copy */ |
|
|
|
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); |
|
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */ |
|
|
|
T2 = Sigma0_256(a) + Maj(a, b, c); |
|
|
|
h = g; |
|
|
|
g = f; |
|
|
|
f = e; |
|
|
|
e = d + T1; |
|
|
|
d = c; |
|
|
|
c = b; |
|
|
|
b = a; |
|
|
|
a = T1 + T2; |
|
|
|
|
|
|
|
j++; |
|
|
|
} while (j < 16); |
|
|
|
|
|
|
|
do { |
|
|
|
/* Part of the message block expansion: */ |
|
|
|
s0 = W256[(j+1)&0x0f]; |
|
|
|
s0 = sigma0_256(s0); |
|
|
|
s1 = W256[(j+14)&0x0f]; |
|
|
|
s1 = sigma1_256(s1); |
|
|
|
|
|
|
|
/* Apply the SHA-256 compression function to update a..h */ |
|
|
|
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + |
|
|
|
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); |
|
|
|
T2 = Sigma0_256(a) + Maj(a, b, c); |
|
|
|
h = g; |
|
|
|
g = f; |
|
|
|
f = e; |
|
|
|
e = d + T1; |
|
|
|
d = c; |
|
|
|
c = b; |
|
|
|
b = a; |
|
|
|
a = T1 + T2; |
|
|
|
|
|
|
|
j++; |
|
|
|
} while (j < 64); |
|
|
|
|
|
|
|
/* Compute the current intermediate hash value */ |
|
|
|
context->state[0] += a; |
|
|
|
context->state[1] += b; |
|
|
|
context->state[2] += c; |
|
|
|
context->state[3] += d; |
|
|
|
context->state[4] += e; |
|
|
|
context->state[5] += f; |
|
|
|
context->state[6] += g; |
|
|
|
context->state[7] += h; |
|
|
|
|
|
|
|
/* Clean up */ |
|
|
|
a = b = c = d = e = f = g = h = T1 = T2 = 0; |
|
|
|
} |
|
|
|
|
|
|
|
#endif /* SHA2_UNROLL_TRANSFORM */ |
|
|
|
|
|
|
|
void SHA256_Update(SHA256_CTX *context, const u_int8_t *data, size_t len) { |
|
|
|
unsigned int freespace, usedspace; |
|
|
|
|
|
|
|
if (len == 0) { |
|
|
|
/* Calling with no data is valid - we do nothing */ |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; |
|
|
|
if (usedspace > 0) { |
|
|
|
/* Calculate how much free space is available in the buffer */ |
|
|
|
freespace = SHA256_BLOCK_LENGTH - usedspace; |
|
|
|
|
|
|
|
if (len >= freespace) { |
|
|
|
/* Fill the buffer completely and process it */ |
|
|
|
memcpy(&context->buffer[usedspace], data, freespace); |
|
|
|
context->bitcount += freespace << 3; |
|
|
|
len -= freespace; |
|
|
|
data += freespace; |
|
|
|
SHA256_Transform(context, (u_int32_t *)context->buffer); |
|
|
|
} else { |
|
|
|
/* The buffer is not yet full */ |
|
|
|
memcpy(&context->buffer[usedspace], data, len); |
|
|
|
context->bitcount += len << 3; |
|
|
|
/* Clean up: */ |
|
|
|
usedspace = freespace = 0; |
|
|
|
return; |
|
|
|
} |
|
|
|
} |
|
|
|
while (len >= SHA256_BLOCK_LENGTH) { |
|
|
|
/* Process as many complete blocks as we can */ |
|
|
|
SHA256_Transform(context, (const u_int32_t *)data); |
|
|
|
context->bitcount += SHA256_BLOCK_LENGTH << 3; |
|
|
|
len -= SHA256_BLOCK_LENGTH; |
|
|
|
data += SHA256_BLOCK_LENGTH; |
|
|
|
} |
|
|
|
if (len > 0) { |
|
|
|
/* There's left-overs, so save 'em */ |
|
|
|
memcpy(context->buffer, data, len); |
|
|
|
context->bitcount += len << 3; |
|
|
|
} |
|
|
|
/* Clean up: */ |
|
|
|
usedspace = freespace = 0; |
|
|
|
} |
|
|
|
|
|
|
|
void SHA256_Final(u_int8_t digest[], SHA256_CTX *context) { |
|
|
|
u_int32_t *d = (u_int32_t *)digest; |
|
|
|
unsigned int usedspace; |
|
|
|
|
|
|
|
/* If no digest buffer is passed, we don't bother doing this: */ |
|
|
|
if (digest != (u_int8_t *)0) { |
|
|
|
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; |
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
|
|
|
/* Convert FROM host byte order */ |
|
|
|
REVERSE64(context->bitcount,context->bitcount); |
|
|
|
#endif |
|
|
|
if (usedspace > 0) { |
|
|
|
/* Begin padding with a 1 bit: */ |
|
|
|
context->buffer[usedspace++] = 0x80; |
|
|
|
|
|
|
|
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { |
|
|
|
/* Set-up for the last transform: */ |
|
|
|
memset(&context->buffer[usedspace], 0, SHA256_SHORT_BLOCK_LENGTH - usedspace); |
|
|
|
} else { |
|
|
|
if (usedspace < SHA256_BLOCK_LENGTH) { |
|
|
|
memset(&context->buffer[usedspace], 0, SHA256_BLOCK_LENGTH - usedspace); |
|
|
|
} |
|
|
|
/* Do second-to-last transform: */ |
|
|
|
SHA256_Transform(context, (u_int32_t *)context->buffer); |
|
|
|
|
|
|
|
/* And set-up for the last transform: */ |
|
|
|
memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); |
|
|
|
} |
|
|
|
} else { |
|
|
|
/* Set-up for the last transform: */ |
|
|
|
memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); |
|
|
|
|
|
|
|
/* Begin padding with a 1 bit: */ |
|
|
|
*context->buffer = 0x80; |
|
|
|
} |
|
|
|
/* Set the bit count: */ |
|
|
|
*(u_int64_t *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount; |
|
|
|
|
|
|
|
/* Final transform: */ |
|
|
|
SHA256_Transform(context, (u_int32_t *)context->buffer); |
|
|
|
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
|
|
|
{ |
|
|
|
/* Convert TO host byte order */ |
|
|
|
int j; |
|
|
|
for (j = 0; j < 8; j++) { |
|
|
|
REVERSE32(context->state[j],context->state[j]); |
|
|
|
*d++ = context->state[j]; |
|
|
|
} |
|
|
|
} |
|
|
|
#else |
|
|
|
memcpy(d, context->state, SHA256_DIGEST_LENGTH); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
/* Clean up state data: */ |
|
|
|
memset(context, 0, sizeof(context)); |
|
|
|
usedspace = 0; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/*** SHA-512: *********************************************************/ |
|
|
|
void SHA512_Init(SHA512_CTX *context) { |
|
|
|
if (context == (SHA512_CTX *)0) { |
|
|
|
return; |
|
|
|
} |
|
|
|
memcpy(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH); |
|
|
|
memset(context->buffer, 0, SHA512_BLOCK_LENGTH); |
|
|
|
context->bitcount[0] = context->bitcount[1] = 0; |
|
|
|
} |
|
|
|
|
|
|
|
#ifdef SHA2_UNROLL_TRANSFORM |
|
|
|
|
|
|
|
/* Unrolled SHA-512 round macros: */ |
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
|
|
|
|
|
|
|
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ |
|
|
|
REVERSE64(*data++, W512[j]); \ |
|
|
|
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ |
|
|
|
K512[j] + W512[j]; \ |
|
|
|
(d) += T1, \ |
|
|
|
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ |
|
|
|
j++ |
|
|
|
|
|
|
|
|
|
|
|
#else /* BYTE_ORDER == LITTLE_ENDIAN */ |
|
|
|
|
|
|
|
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ |
|
|
|
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ |
|
|
|
K512[j] + (W512[j] = *data++); \ |
|
|
|
(d) += T1; \ |
|
|
|
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ |
|
|
|
j++ |
|
|
|
|
|
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */ |
|
|
|
|
|
|
|
#define ROUND512(a,b,c,d,e,f,g,h) \ |
|
|
|
s0 = W512[(j+1)&0x0f]; \ |
|
|
|
s0 = sigma0_512(s0); \ |
|
|
|
s1 = W512[(j+14)&0x0f]; \ |
|
|
|
s1 = sigma1_512(s1); \ |
|
|
|
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ |
|
|
|
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ |
|
|
|
(d) += T1; \ |
|
|
|
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ |
|
|
|
j++ |
|
|
|
|
|
|
|
void SHA512_Transform(SHA512_CTX *context, const u_int64_t *data) { |
|
|
|
u_int64_t a, b, c, d, e, f, g, h, s0, s1; |
|
|
|
u_int64_t T1, *W512 = (u_int64_t *)context->buffer; |
|
|
|
int j; |
|
|
|
|
|
|
|
/* Initialize registers with the prev. intermediate value */ |
|
|
|
a = context->state[0]; |
|
|
|
b = context->state[1]; |
|
|
|
c = context->state[2]; |
|
|
|
d = context->state[3]; |
|
|
|
e = context->state[4]; |
|
|
|
f = context->state[5]; |
|
|
|
g = context->state[6]; |
|
|
|
h = context->state[7]; |
|
|
|
|
|
|
|
j = 0; |
|
|
|
do { |
|
|
|
ROUND512_0_TO_15(a,b,c,d,e,f,g,h); |
|
|
|
ROUND512_0_TO_15(h,a,b,c,d,e,f,g); |
|
|
|
ROUND512_0_TO_15(g,h,a,b,c,d,e,f); |
|
|
|
ROUND512_0_TO_15(f,g,h,a,b,c,d,e); |
|
|
|
ROUND512_0_TO_15(e,f,g,h,a,b,c,d); |
|
|
|
ROUND512_0_TO_15(d,e,f,g,h,a,b,c); |
|
|
|
ROUND512_0_TO_15(c,d,e,f,g,h,a,b); |
|
|
|
ROUND512_0_TO_15(b,c,d,e,f,g,h,a); |
|
|
|
} while (j < 16); |
|
|
|
|
|
|
|
/* Now for the remaining rounds up to 79: */ |
|
|
|
do { |
|
|
|
ROUND512(a,b,c,d,e,f,g,h); |
|
|
|
ROUND512(h,a,b,c,d,e,f,g); |
|
|
|
ROUND512(g,h,a,b,c,d,e,f); |
|
|
|
ROUND512(f,g,h,a,b,c,d,e); |
|
|
|
ROUND512(e,f,g,h,a,b,c,d); |
|
|
|
ROUND512(d,e,f,g,h,a,b,c); |
|
|
|
ROUND512(c,d,e,f,g,h,a,b); |
|
|
|
ROUND512(b,c,d,e,f,g,h,a); |
|
|
|
} while (j < 80); |
|
|
|
|
|
|
|
/* Compute the current intermediate hash value */ |
|
|
|
context->state[0] += a; |
|
|
|
context->state[1] += b; |
|
|
|
context->state[2] += c; |
|
|
|
context->state[3] += d; |
|
|
|
context->state[4] += e; |
|
|
|
context->state[5] += f; |
|
|
|
context->state[6] += g; |
|
|
|
context->state[7] += h; |
|
|
|
|
|
|
|
/* Clean up */ |
|
|
|
a = b = c = d = e = f = g = h = T1 = 0; |
|
|
|
} |
|
|
|
|
|
|
|
#else /* SHA2_UNROLL_TRANSFORM */ |
|
|
|
|
|
|
|
void SHA512_Transform(SHA512_CTX *context, const u_int64_t *data) { |
|
|
|
u_int64_t a, b, c, d, e, f, g, h, s0, s1; |
|
|
|
u_int64_t T1, T2, *W512 = (u_int64_t *)context->buffer; |
|
|
|
int j; |
|
|
|
|
|
|
|
/* Initialize registers with the prev. intermediate value */ |
|
|
|
a = context->state[0]; |
|
|
|
b = context->state[1]; |
|
|
|
c = context->state[2]; |
|
|
|
d = context->state[3]; |
|
|
|
e = context->state[4]; |
|
|
|
f = context->state[5]; |
|
|
|
g = context->state[6]; |
|
|
|
h = context->state[7]; |
|
|
|
|
|
|
|
j = 0; |
|
|
|
do { |
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
|
|
|
/* Convert TO host byte order */ |
|
|
|
REVERSE64(*data++, W512[j]); |
|
|
|
/* Apply the SHA-512 compression function to update a..h */ |
|
|
|
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; |
|
|
|
#else /* BYTE_ORDER == LITTLE_ENDIAN */ |
|
|
|
/* Apply the SHA-512 compression function to update a..h with copy */ |
|
|
|
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); |
|
|
|
#endif /* BYTE_ORDER == LITTLE_ENDIAN */ |
|
|
|
T2 = Sigma0_512(a) + Maj(a, b, c); |
|
|
|
h = g; |
|
|
|
g = f; |
|
|
|
f = e; |
|
|
|
e = d + T1; |
|
|
|
d = c; |
|
|
|
c = b; |
|
|
|
b = a; |
|
|
|
a = T1 + T2; |
|
|
|
|
|
|
|
j++; |
|
|
|
} while (j < 16); |
|
|
|
|
|
|
|
do { |
|
|
|
/* Part of the message block expansion: */ |
|
|
|
s0 = W512[(j+1)&0x0f]; |
|
|
|
s0 = sigma0_512(s0); |
|
|
|
s1 = W512[(j+14)&0x0f]; |
|
|
|
s1 = sigma1_512(s1); |
|
|
|
|
|
|
|
/* Apply the SHA-512 compression function to update a..h */ |
|
|
|
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + |
|
|
|
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); |
|
|
|
T2 = Sigma0_512(a) + Maj(a, b, c); |
|
|
|
h = g; |
|
|
|
g = f; |
|
|
|
f = e; |
|
|
|
e = d + T1; |
|
|
|
d = c; |
|
|
|
c = b; |
|
|
|
b = a; |
|
|
|
a = T1 + T2; |
|
|
|
|
|
|
|
j++; |
|
|
|
} while (j < 80); |
|
|
|
|
|
|
|
/* Compute the current intermediate hash value */ |
|
|
|
context->state[0] += a; |
|
|
|
context->state[1] += b; |
|
|
|
context->state[2] += c; |
|
|
|
context->state[3] += d; |
|
|
|
context->state[4] += e; |
|
|
|
context->state[5] += f; |
|
|
|
context->state[6] += g; |
|
|
|
context->state[7] += h; |
|
|
|
|
|
|
|
/* Clean up */ |
|
|
|
a = b = c = d = e = f = g = h = T1 = T2 = 0; |
|
|
|
} |
|
|
|
|
|
|
|
#endif /* SHA2_UNROLL_TRANSFORM */ |
|
|
|
|
|
|
|
void SHA512_Update(SHA512_CTX *context, const u_int8_t *data, size_t len) { |
|
|
|
unsigned int freespace, usedspace; |
|
|
|
|
|
|
|
if (len == 0) { |
|
|
|
/* Calling with no data is valid - we do nothing */ |
|
|
|
return; |
|
|
|
} |
|
|
|
|
|
|
|
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; |
|
|
|
if (usedspace > 0) { |
|
|
|
/* Calculate how much free space is available in the buffer */ |
|
|
|
freespace = SHA512_BLOCK_LENGTH - usedspace; |
|
|
|
|
|
|
|
if (len >= freespace) { |
|
|
|
/* Fill the buffer completely and process it */ |
|
|
|
memcpy(&context->buffer[usedspace], data, freespace); |
|
|
|
ADDINC128(context->bitcount, freespace << 3); |
|
|
|
len -= freespace; |
|
|
|
data += freespace; |
|
|
|
SHA512_Transform(context, (u_int64_t *)context->buffer); |
|
|
|
} else { |
|
|
|
/* The buffer is not yet full */ |
|
|
|
memcpy(&context->buffer[usedspace], data, len); |
|
|
|
ADDINC128(context->bitcount, len << 3); |
|
|
|
/* Clean up: */ |
|
|
|
usedspace = freespace = 0; |
|
|
|
return; |
|
|
|
} |
|
|
|
} |
|
|
|
while (len >= SHA512_BLOCK_LENGTH) { |
|
|
|
/* Process as many complete blocks as we can */ |
|
|
|
SHA512_Transform(context, (const u_int64_t *)data); |
|
|
|
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); |
|
|
|
len -= SHA512_BLOCK_LENGTH; |
|
|
|
data += SHA512_BLOCK_LENGTH; |
|
|
|
} |
|
|
|
if (len > 0) { |
|
|
|
/* There's left-overs, so save 'em */ |
|
|
|
memcpy(context->buffer, data, len); |
|
|
|
ADDINC128(context->bitcount, len << 3); |
|
|
|
} |
|
|
|
/* Clean up: */ |
|
|
|
usedspace = freespace = 0; |
|
|
|
} |
|
|
|
|
|
|
|
void SHA512_Last(SHA512_CTX *context) { |
|
|
|
unsigned int usedspace; |
|
|
|
|
|
|
|
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; |
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
|
|
|
/* Convert FROM host byte order */ |
|
|
|
REVERSE64(context->bitcount[0],context->bitcount[0]); |
|
|
|
REVERSE64(context->bitcount[1],context->bitcount[1]); |
|
|
|
#endif |
|
|
|
if (usedspace > 0) { |
|
|
|
/* Begin padding with a 1 bit: */ |
|
|
|
context->buffer[usedspace++] = 0x80; |
|
|
|
|
|
|
|
if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { |
|
|
|
/* Set-up for the last transform: */ |
|
|
|
memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); |
|
|
|
} else { |
|
|
|
if (usedspace < SHA512_BLOCK_LENGTH) { |
|
|
|
memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace); |
|
|
|
} |
|
|
|
/* Do second-to-last transform: */ |
|
|
|
SHA512_Transform(context, (u_int64_t *)context->buffer); |
|
|
|
|
|
|
|
/* And set-up for the last transform: */ |
|
|
|
memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2); |
|
|
|
} |
|
|
|
} else { |
|
|
|
/* Prepare for final transform: */ |
|
|
|
memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); |
|
|
|
|
|
|
|
/* Begin padding with a 1 bit: */ |
|
|
|
*context->buffer = 0x80; |
|
|
|
} |
|
|
|
/* Store the length of input data (in bits): */ |
|
|
|
*(u_int64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1]; |
|
|
|
*(u_int64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0]; |
|
|
|
|
|
|
|
/* Final transform: */ |
|
|
|
SHA512_Transform(context, (u_int64_t *)context->buffer); |
|
|
|
} |
|
|
|
|
|
|
|
void SHA512_Final(u_int8_t digest[], SHA512_CTX *context) { |
|
|
|
u_int64_t *d = (u_int64_t *)digest; |
|
|
|
|
|
|
|
/* If no digest buffer is passed, we don't bother doing this: */ |
|
|
|
if (digest != (u_int8_t *)0) { |
|
|
|
SHA512_Last(context); |
|
|
|
|
|
|
|
/* Save the hash data for output: */ |
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
|
|
|
{ |
|
|
|
/* Convert TO host byte order */ |
|
|
|
int j; |
|
|
|
for (j = 0; j < 8; j++) { |
|
|
|
REVERSE64(context->state[j],context->state[j]); |
|
|
|
*d++ = context->state[j]; |
|
|
|
} |
|
|
|
} |
|
|
|
#else |
|
|
|
memcpy(d, context->state, SHA512_DIGEST_LENGTH); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
/* Zero out state data */ |
|
|
|
memset(context, 0, sizeof(context)); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/*** SHA-384: *********************************************************/ |
|
|
|
void SHA384_Init(SHA384_CTX *context) { |
|
|
|
if (context == (SHA384_CTX *)0) { |
|
|
|
return; |
|
|
|
} |
|
|
|
memcpy(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH); |
|
|
|
memset(context->buffer, 0, SHA384_BLOCK_LENGTH); |
|
|
|
context->bitcount[0] = context->bitcount[1] = 0; |
|
|
|
} |
|
|
|
|
|
|
|
void SHA384_Update(SHA384_CTX *context, const u_int8_t *data, size_t len) { |
|
|
|
SHA512_Update((SHA512_CTX *)context, data, len); |
|
|
|
} |
|
|
|
|
|
|
|
void SHA384_Final(u_int8_t digest[], SHA384_CTX *context) { |
|
|
|
u_int64_t *d = (u_int64_t *)digest; |
|
|
|
|
|
|
|
/* If no digest buffer is passed, we don't bother doing this: */ |
|
|
|
if (digest != (u_int8_t *)0) { |
|
|
|
SHA512_Last((SHA512_CTX *)context); |
|
|
|
|
|
|
|
/* Save the hash data for output: */ |
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN |
|
|
|
{ |
|
|
|
/* Convert TO host byte order */ |
|
|
|
int j; |
|
|
|
for (j = 0; j < 6; j++) { |
|
|
|
REVERSE64(context->state[j],context->state[j]); |
|
|
|
*d++ = context->state[j]; |
|
|
|
} |
|
|
|
} |
|
|
|
#else |
|
|
|
memcpy(d, context->state, SHA384_DIGEST_LENGTH); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
/* Zero out state data */ |
|
|
|
memset(context, 0, sizeof(context)); |
|
|
|
} |