|
|
@ -1,686 +1,10 @@ |
|
|
|
/* $OpenBSD: crypt.c,v 1.26 2015/01/16 16:48:51 deraadt Exp $ */ |
|
|
|
/* $OpenBSD: crypt.c,v 1.27 2015/04/06 20:49:41 tedu Exp $ */ |
|
|
|
|
|
|
|
/* |
|
|
|
* FreeSec: libcrypt |
|
|
|
* |
|
|
|
* Copyright (c) 1994 David Burren |
|
|
|
* All rights reserved. |
|
|
|
* |
|
|
|
* Redistribution and use in source and binary forms, with or without |
|
|
|
* modification, are permitted provided that the following conditions |
|
|
|
* are met: |
|
|
|
* 1. Redistributions of source code must retain the above copyright |
|
|
|
* notice, this list of conditions and the following disclaimer. |
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
|
|
* notice, this list of conditions and the following disclaimer in the |
|
|
|
* documentation and/or other materials provided with the distribution. |
|
|
|
* 4. Neither the name of the author nor the names of other contributors |
|
|
|
* may be used to endorse or promote products derived from this software |
|
|
|
* without specific prior written permission. |
|
|
|
* |
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
|
|
* SUCH DAMAGE. |
|
|
|
* |
|
|
|
* |
|
|
|
* This is an original implementation of the DES and the crypt(3) interfaces |
|
|
|
* by David Burren <davidb@werj.com.au>. |
|
|
|
* |
|
|
|
* An excellent reference on the underlying algorithm (and related |
|
|
|
* algorithms) is: |
|
|
|
* |
|
|
|
* B. Schneier, Applied Cryptography: protocols, algorithms, |
|
|
|
* and source code in C, John Wiley & Sons, 1994. |
|
|
|
* |
|
|
|
* Note that in that book's description of DES the lookups for the initial, |
|
|
|
* pbox, and final permutations are inverted (this has been brought to the |
|
|
|
* attention of the author). A list of errata for this book has been |
|
|
|
* posted to the sci.crypt newsgroup by the author and is available for FTP. |
|
|
|
*/ |
|
|
|
|
|
|
|
#include <sys/types.h> |
|
|
|
#include <pwd.h> |
|
|
|
#include <unistd.h> |
|
|
|
#include <string.h> |
|
|
|
|
|
|
|
#ifdef DEBUG |
|
|
|
# include <stdio.h> |
|
|
|
#endif |
|
|
|
|
|
|
|
static const u_char IP[64] = { |
|
|
|
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, |
|
|
|
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, |
|
|
|
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, |
|
|
|
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 |
|
|
|
}; |
|
|
|
|
|
|
|
static u_char inv_key_perm[64]; |
|
|
|
static u_char u_key_perm[56]; |
|
|
|
static u_char const key_perm[56] = { |
|
|
|
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, |
|
|
|
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, |
|
|
|
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, |
|
|
|
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 |
|
|
|
}; |
|
|
|
|
|
|
|
static const u_char key_shifts[16] = { |
|
|
|
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 |
|
|
|
}; |
|
|
|
|
|
|
|
static u_char inv_comp_perm[56]; |
|
|
|
static const u_char comp_perm[48] = { |
|
|
|
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, |
|
|
|
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, |
|
|
|
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, |
|
|
|
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 |
|
|
|
}; |
|
|
|
|
|
|
|
/* |
|
|
|
* No E box is used, as it's replaced by some ANDs, shifts, and ORs. |
|
|
|
*/ |
|
|
|
|
|
|
|
static u_char u_sbox[8][64]; |
|
|
|
static const u_char sbox[8][64] = { |
|
|
|
{ |
|
|
|
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, |
|
|
|
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, |
|
|
|
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, |
|
|
|
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 |
|
|
|
}, |
|
|
|
{ |
|
|
|
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, |
|
|
|
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, |
|
|
|
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, |
|
|
|
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 |
|
|
|
}, |
|
|
|
{ |
|
|
|
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, |
|
|
|
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, |
|
|
|
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, |
|
|
|
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 |
|
|
|
}, |
|
|
|
{ |
|
|
|
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, |
|
|
|
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, |
|
|
|
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, |
|
|
|
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 |
|
|
|
}, |
|
|
|
{ |
|
|
|
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, |
|
|
|
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, |
|
|
|
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, |
|
|
|
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 |
|
|
|
}, |
|
|
|
{ |
|
|
|
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, |
|
|
|
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, |
|
|
|
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, |
|
|
|
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 |
|
|
|
}, |
|
|
|
{ |
|
|
|
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, |
|
|
|
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, |
|
|
|
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, |
|
|
|
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 |
|
|
|
}, |
|
|
|
{ |
|
|
|
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, |
|
|
|
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, |
|
|
|
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, |
|
|
|
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 |
|
|
|
} |
|
|
|
}; |
|
|
|
|
|
|
|
static u_char un_pbox[32]; |
|
|
|
static const u_char pbox[32] = { |
|
|
|
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, |
|
|
|
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 |
|
|
|
}; |
|
|
|
|
|
|
|
const u_int32_t _des_bits32[32] = |
|
|
|
{ |
|
|
|
0x80000000, 0x40000000, 0x20000000, 0x10000000, |
|
|
|
0x08000000, 0x04000000, 0x02000000, 0x01000000, |
|
|
|
0x00800000, 0x00400000, 0x00200000, 0x00100000, |
|
|
|
0x00080000, 0x00040000, 0x00020000, 0x00010000, |
|
|
|
0x00008000, 0x00004000, 0x00002000, 0x00001000, |
|
|
|
0x00000800, 0x00000400, 0x00000200, 0x00000100, |
|
|
|
0x00000080, 0x00000040, 0x00000020, 0x00000010, |
|
|
|
0x00000008, 0x00000004, 0x00000002, 0x00000001 |
|
|
|
}; |
|
|
|
|
|
|
|
static const u_char _des_bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; |
|
|
|
|
|
|
|
static const u_int32_t *bits28, *bits24; |
|
|
|
static u_char init_perm[64], final_perm[64]; |
|
|
|
static u_int32_t en_keysl[16], en_keysr[16]; |
|
|
|
static u_int32_t de_keysl[16], de_keysr[16]; |
|
|
|
int _des_initialised = 0; |
|
|
|
static u_char m_sbox[4][4096]; |
|
|
|
static u_int32_t psbox[4][256]; |
|
|
|
static u_int32_t ip_maskl[8][256], ip_maskr[8][256]; |
|
|
|
static u_int32_t fp_maskl[8][256], fp_maskr[8][256]; |
|
|
|
static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; |
|
|
|
static u_int32_t comp_maskl[8][128], comp_maskr[8][128]; |
|
|
|
static u_int32_t old_rawkey0, old_rawkey1; |
|
|
|
|
|
|
|
static u_char ascii64[] = |
|
|
|
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; |
|
|
|
/* 0000000000111111111122222222223333333333444444444455555555556666 */ |
|
|
|
/* 0123456789012345678901234567890123456789012345678901234567890123 */ |
|
|
|
|
|
|
|
static __inline int |
|
|
|
ascii_to_bin(char ch) |
|
|
|
{ |
|
|
|
if (ch > 'z') |
|
|
|
return(0); |
|
|
|
if (ch >= 'a') |
|
|
|
return(ch - 'a' + 38); |
|
|
|
if (ch > 'Z') |
|
|
|
return(0); |
|
|
|
if (ch >= 'A') |
|
|
|
return(ch - 'A' + 12); |
|
|
|
if (ch > '9') |
|
|
|
return(0); |
|
|
|
if (ch >= '.') |
|
|
|
return(ch - '.'); |
|
|
|
return(0); |
|
|
|
} |
|
|
|
|
|
|
|
static void |
|
|
|
_des_init(void) |
|
|
|
{ |
|
|
|
int i, j, b, k, inbit, obit; |
|
|
|
u_int32_t *p, *il, *ir, *fl, *fr; |
|
|
|
|
|
|
|
old_rawkey0 = old_rawkey1 = 0; |
|
|
|
bits24 = (bits28 = _des_bits32 + 4) + 4; |
|
|
|
|
|
|
|
/* |
|
|
|
* Invert the S-boxes, reordering the input bits. |
|
|
|
*/ |
|
|
|
for (i = 0; i < 8; i++) |
|
|
|
for (j = 0; j < 64; j++) { |
|
|
|
b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf); |
|
|
|
u_sbox[i][j] = sbox[i][b]; |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Convert the inverted S-boxes into 4 arrays of 8 bits. |
|
|
|
* Each will handle 12 bits of the S-box input. |
|
|
|
*/ |
|
|
|
for (b = 0; b < 4; b++) |
|
|
|
for (i = 0; i < 64; i++) |
|
|
|
for (j = 0; j < 64; j++) |
|
|
|
m_sbox[b][(i << 6) | j] = |
|
|
|
(u_sbox[(b << 1)][i] << 4) | |
|
|
|
u_sbox[(b << 1) + 1][j]; |
|
|
|
|
|
|
|
/* |
|
|
|
* Set up the initial & final permutations into a useful form, and |
|
|
|
* initialise the inverted key permutation. |
|
|
|
*/ |
|
|
|
for (i = 0; i < 64; i++) { |
|
|
|
init_perm[final_perm[i] = IP[i] - 1] = i; |
|
|
|
inv_key_perm[i] = 255; |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Invert the key permutation and initialise the inverted key |
|
|
|
* compression permutation. |
|
|
|
*/ |
|
|
|
for (i = 0; i < 56; i++) { |
|
|
|
u_key_perm[i] = key_perm[i] - 1; |
|
|
|
inv_key_perm[key_perm[i] - 1] = i; |
|
|
|
inv_comp_perm[i] = 255; |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Invert the key compression permutation. |
|
|
|
*/ |
|
|
|
for (i = 0; i < 48; i++) { |
|
|
|
inv_comp_perm[comp_perm[i] - 1] = i; |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Set up the OR-mask arrays for the initial and final permutations, |
|
|
|
* and for the key initial and compression permutations. |
|
|
|
*/ |
|
|
|
for (k = 0; k < 8; k++) { |
|
|
|
for (i = 0; i < 256; i++) { |
|
|
|
*(il = &ip_maskl[k][i]) = 0; |
|
|
|
*(ir = &ip_maskr[k][i]) = 0; |
|
|
|
*(fl = &fp_maskl[k][i]) = 0; |
|
|
|
*(fr = &fp_maskr[k][i]) = 0; |
|
|
|
for (j = 0; j < 8; j++) { |
|
|
|
inbit = 8 * k + j; |
|
|
|
if (i & _des_bits8[j]) { |
|
|
|
if ((obit = init_perm[inbit]) < 32) |
|
|
|
*il |= _des_bits32[obit]; |
|
|
|
else |
|
|
|
*ir |= _des_bits32[obit-32]; |
|
|
|
if ((obit = final_perm[inbit]) < 32) |
|
|
|
*fl |= _des_bits32[obit]; |
|
|
|
else |
|
|
|
*fr |= _des_bits32[obit - 32]; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
for (i = 0; i < 128; i++) { |
|
|
|
*(il = &key_perm_maskl[k][i]) = 0; |
|
|
|
*(ir = &key_perm_maskr[k][i]) = 0; |
|
|
|
for (j = 0; j < 7; j++) { |
|
|
|
inbit = 8 * k + j; |
|
|
|
if (i & _des_bits8[j + 1]) { |
|
|
|
if ((obit = inv_key_perm[inbit]) == 255) |
|
|
|
continue; |
|
|
|
if (obit < 28) |
|
|
|
*il |= bits28[obit]; |
|
|
|
else |
|
|
|
*ir |= bits28[obit - 28]; |
|
|
|
} |
|
|
|
} |
|
|
|
*(il = &comp_maskl[k][i]) = 0; |
|
|
|
*(ir = &comp_maskr[k][i]) = 0; |
|
|
|
for (j = 0; j < 7; j++) { |
|
|
|
inbit = 7 * k + j; |
|
|
|
if (i & _des_bits8[j + 1]) { |
|
|
|
if ((obit=inv_comp_perm[inbit]) == 255) |
|
|
|
continue; |
|
|
|
if (obit < 24) |
|
|
|
*il |= bits24[obit]; |
|
|
|
else |
|
|
|
*ir |= bits24[obit - 24]; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Invert the P-box permutation, and convert into OR-masks for |
|
|
|
* handling the output of the S-box arrays setup above. |
|
|
|
*/ |
|
|
|
for (i = 0; i < 32; i++) |
|
|
|
un_pbox[pbox[i] - 1] = i; |
|
|
|
|
|
|
|
for (b = 0; b < 4; b++) |
|
|
|
for (i = 0; i < 256; i++) { |
|
|
|
*(p = &psbox[b][i]) = 0; |
|
|
|
for (j = 0; j < 8; j++) { |
|
|
|
if (i & _des_bits8[j]) |
|
|
|
*p |= _des_bits32[un_pbox[8 * b + j]]; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
_des_initialised = 1; |
|
|
|
} |
|
|
|
|
|
|
|
static u_int32_t |
|
|
|
_des_setup_salt(int32_t salt) |
|
|
|
{ |
|
|
|
u_int32_t obit, saltbit, saltbits; |
|
|
|
int i; |
|
|
|
|
|
|
|
saltbits = 0; |
|
|
|
saltbit = 1; |
|
|
|
obit = 0x800000; |
|
|
|
for (i = 0; i < 24; i++) { |
|
|
|
if (salt & saltbit) |
|
|
|
saltbits |= obit; |
|
|
|
saltbit <<= 1; |
|
|
|
obit >>= 1; |
|
|
|
} |
|
|
|
return saltbits; |
|
|
|
} |
|
|
|
|
|
|
|
static int |
|
|
|
des_setkey(const char *key) |
|
|
|
{ |
|
|
|
u_int32_t k0, k1, rawkey0, rawkey1; |
|
|
|
int shifts, round; |
|
|
|
|
|
|
|
if (!_des_initialised) |
|
|
|
_des_init(); |
|
|
|
|
|
|
|
rawkey0 = ntohl(*(u_int32_t *) key); |
|
|
|
rawkey1 = ntohl(*(u_int32_t *) (key + 4)); |
|
|
|
|
|
|
|
if ((rawkey0 | rawkey1) |
|
|
|
&& rawkey0 == old_rawkey0 |
|
|
|
&& rawkey1 == old_rawkey1) { |
|
|
|
/* |
|
|
|
* Already setup for this key. |
|
|
|
* This optimisation fails on a zero key (which is weak and |
|
|
|
* has bad parity anyway) in order to simplify the starting |
|
|
|
* conditions. |
|
|
|
*/ |
|
|
|
return(0); |
|
|
|
} |
|
|
|
old_rawkey0 = rawkey0; |
|
|
|
old_rawkey1 = rawkey1; |
|
|
|
|
|
|
|
/* |
|
|
|
* Do key permutation and split into two 28-bit subkeys. |
|
|
|
*/ |
|
|
|
k0 = key_perm_maskl[0][rawkey0 >> 25] |
|
|
|
| key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] |
|
|
|
| key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] |
|
|
|
| key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] |
|
|
|
| key_perm_maskl[4][rawkey1 >> 25] |
|
|
|
| key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] |
|
|
|
| key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] |
|
|
|
| key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; |
|
|
|
k1 = key_perm_maskr[0][rawkey0 >> 25] |
|
|
|
| key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] |
|
|
|
| key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] |
|
|
|
| key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] |
|
|
|
| key_perm_maskr[4][rawkey1 >> 25] |
|
|
|
| key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] |
|
|
|
| key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] |
|
|
|
| key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; |
|
|
|
/* |
|
|
|
* Rotate subkeys and do compression permutation. |
|
|
|
*/ |
|
|
|
shifts = 0; |
|
|
|
for (round = 0; round < 16; round++) { |
|
|
|
u_int32_t t0, t1; |
|
|
|
|
|
|
|
shifts += key_shifts[round]; |
|
|
|
|
|
|
|
t0 = (k0 << shifts) | (k0 >> (28 - shifts)); |
|
|
|
t1 = (k1 << shifts) | (k1 >> (28 - shifts)); |
|
|
|
|
|
|
|
de_keysl[15 - round] = |
|
|
|
en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] |
|
|
|
| comp_maskl[1][(t0 >> 14) & 0x7f] |
|
|
|
| comp_maskl[2][(t0 >> 7) & 0x7f] |
|
|
|
| comp_maskl[3][t0 & 0x7f] |
|
|
|
| comp_maskl[4][(t1 >> 21) & 0x7f] |
|
|
|
| comp_maskl[5][(t1 >> 14) & 0x7f] |
|
|
|
| comp_maskl[6][(t1 >> 7) & 0x7f] |
|
|
|
| comp_maskl[7][t1 & 0x7f]; |
|
|
|
|
|
|
|
de_keysr[15 - round] = |
|
|
|
en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] |
|
|
|
| comp_maskr[1][(t0 >> 14) & 0x7f] |
|
|
|
| comp_maskr[2][(t0 >> 7) & 0x7f] |
|
|
|
| comp_maskr[3][t0 & 0x7f] |
|
|
|
| comp_maskr[4][(t1 >> 21) & 0x7f] |
|
|
|
| comp_maskr[5][(t1 >> 14) & 0x7f] |
|
|
|
| comp_maskr[6][(t1 >> 7) & 0x7f] |
|
|
|
| comp_maskr[7][t1 & 0x7f]; |
|
|
|
} |
|
|
|
return(0); |
|
|
|
} |
|
|
|
|
|
|
|
static int |
|
|
|
_des_do_des(u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, |
|
|
|
int count, u_int32_t saltbits) |
|
|
|
{ |
|
|
|
/* |
|
|
|
* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. |
|
|
|
*/ |
|
|
|
u_int32_t l, r, *kl, *kr, *kl1, *kr1; |
|
|
|
u_int32_t f, r48l, r48r; |
|
|
|
int round; |
|
|
|
|
|
|
|
if (count == 0) { |
|
|
|
return(1); |
|
|
|
} else if (count > 0) { |
|
|
|
/* |
|
|
|
* Encrypting |
|
|
|
*/ |
|
|
|
kl1 = en_keysl; |
|
|
|
kr1 = en_keysr; |
|
|
|
} else { |
|
|
|
/* |
|
|
|
* Decrypting |
|
|
|
*/ |
|
|
|
count = -count; |
|
|
|
kl1 = de_keysl; |
|
|
|
kr1 = de_keysr; |
|
|
|
} |
|
|
|
|
|
|
|
/* |
|
|
|
* Do initial permutation (IP). |
|
|
|
*/ |
|
|
|
l = ip_maskl[0][l_in >> 24] |
|
|
|
| ip_maskl[1][(l_in >> 16) & 0xff] |
|
|
|
| ip_maskl[2][(l_in >> 8) & 0xff] |
|
|
|
| ip_maskl[3][l_in & 0xff] |
|
|
|
| ip_maskl[4][r_in >> 24] |
|
|
|
| ip_maskl[5][(r_in >> 16) & 0xff] |
|
|
|
| ip_maskl[6][(r_in >> 8) & 0xff] |
|
|
|
| ip_maskl[7][r_in & 0xff]; |
|
|
|
r = ip_maskr[0][l_in >> 24] |
|
|
|
| ip_maskr[1][(l_in >> 16) & 0xff] |
|
|
|
| ip_maskr[2][(l_in >> 8) & 0xff] |
|
|
|
| ip_maskr[3][l_in & 0xff] |
|
|
|
| ip_maskr[4][r_in >> 24] |
|
|
|
| ip_maskr[5][(r_in >> 16) & 0xff] |
|
|
|
| ip_maskr[6][(r_in >> 8) & 0xff] |
|
|
|
| ip_maskr[7][r_in & 0xff]; |
|
|
|
|
|
|
|
while (count--) { |
|
|
|
/* |
|
|
|
* Do each round. |
|
|
|
*/ |
|
|
|
kl = kl1; |
|
|
|
kr = kr1; |
|
|
|
round = 16; |
|
|
|
while (round--) { |
|
|
|
/* |
|
|
|
* Expand R to 48 bits (simulate the E-box). |
|
|
|
*/ |
|
|
|
r48l = ((r & 0x00000001) << 23) |
|
|
|
| ((r & 0xf8000000) >> 9) |
|
|
|
| ((r & 0x1f800000) >> 11) |
|
|
|
| ((r & 0x01f80000) >> 13) |
|
|
|
| ((r & 0x001f8000) >> 15); |
|
|
|
|
|
|
|
r48r = ((r & 0x0001f800) << 7) |
|
|
|
| ((r & 0x00001f80) << 5) |
|
|
|
| ((r & 0x000001f8) << 3) |
|
|
|
| ((r & 0x0000001f) << 1) |
|
|
|
| ((r & 0x80000000) >> 31); |
|
|
|
/* |
|
|
|
* Do salting for crypt() and friends, and |
|
|
|
* XOR with the permuted key. |
|
|
|
*/ |
|
|
|
f = (r48l ^ r48r) & saltbits; |
|
|
|
r48l ^= f ^ *kl++; |
|
|
|
r48r ^= f ^ *kr++; |
|
|
|
/* |
|
|
|
* Do sbox lookups (which shrink it back to 32 bits) |
|
|
|
* and do the pbox permutation at the same time. |
|
|
|
*/ |
|
|
|
f = psbox[0][m_sbox[0][r48l >> 12]] |
|
|
|
| psbox[1][m_sbox[1][r48l & 0xfff]] |
|
|
|
| psbox[2][m_sbox[2][r48r >> 12]] |
|
|
|
| psbox[3][m_sbox[3][r48r & 0xfff]]; |
|
|
|
/* |
|
|
|
* Now that we've permuted things, complete f(). |
|
|
|
*/ |
|
|
|
f ^= l; |
|
|
|
l = r; |
|
|
|
r = f; |
|
|
|
} |
|
|
|
r = l; |
|
|
|
l = f; |
|
|
|
} |
|
|
|
/* |
|
|
|
* Do final permutation (inverse of IP). |
|
|
|
*/ |
|
|
|
*l_out = fp_maskl[0][l >> 24] |
|
|
|
| fp_maskl[1][(l >> 16) & 0xff] |
|
|
|
| fp_maskl[2][(l >> 8) & 0xff] |
|
|
|
| fp_maskl[3][l & 0xff] |
|
|
|
| fp_maskl[4][r >> 24] |
|
|
|
| fp_maskl[5][(r >> 16) & 0xff] |
|
|
|
| fp_maskl[6][(r >> 8) & 0xff] |
|
|
|
| fp_maskl[7][r & 0xff]; |
|
|
|
*r_out = fp_maskr[0][l >> 24] |
|
|
|
| fp_maskr[1][(l >> 16) & 0xff] |
|
|
|
| fp_maskr[2][(l >> 8) & 0xff] |
|
|
|
| fp_maskr[3][l & 0xff] |
|
|
|
| fp_maskr[4][r >> 24] |
|
|
|
| fp_maskr[5][(r >> 16) & 0xff] |
|
|
|
| fp_maskr[6][(r >> 8) & 0xff] |
|
|
|
| fp_maskr[7][r & 0xff]; |
|
|
|
return(0); |
|
|
|
} |
|
|
|
|
|
|
|
static int |
|
|
|
des_cipher(const char *in, char *out, int32_t salt, int count) |
|
|
|
{ |
|
|
|
u_int32_t l_out, r_out, rawl, rawr, saltbits; |
|
|
|
u_int32_t x[2]; |
|
|
|
int retval; |
|
|
|
|
|
|
|
if (!_des_initialised) |
|
|
|
_des_init(); |
|
|
|
|
|
|
|
saltbits = _des_setup_salt(salt); |
|
|
|
|
|
|
|
memcpy(x, in, sizeof x); |
|
|
|
rawl = ntohl(x[0]); |
|
|
|
rawr = ntohl(x[1]); |
|
|
|
retval = _des_do_des(rawl, rawr, &l_out, &r_out, count, saltbits); |
|
|
|
|
|
|
|
x[0] = htonl(l_out); |
|
|
|
x[1] = htonl(r_out); |
|
|
|
memcpy(out, x, sizeof x); |
|
|
|
return(retval); |
|
|
|
} |
|
|
|
|
|
|
|
static int |
|
|
|
crypt_hashpass(const char *key, const char *setting, char *output) |
|
|
|
{ |
|
|
|
int i; |
|
|
|
u_int32_t count, salt, l, r0, r1, saltbits, keybuf[2]; |
|
|
|
u_char *p, *q; |
|
|
|
|
|
|
|
if (!_des_initialised) |
|
|
|
_des_init(); |
|
|
|
|
|
|
|
/* |
|
|
|
* Copy the key, shifting each character up by one bit |
|
|
|
* and padding with zeros. |
|
|
|
*/ |
|
|
|
q = (u_char *) keybuf; |
|
|
|
while ((q - (u_char *) keybuf) < sizeof(keybuf)) { |
|
|
|
if ((*q++ = *key << 1)) |
|
|
|
key++; |
|
|
|
} |
|
|
|
if (des_setkey((char *) keybuf)) |
|
|
|
return(-1); |
|
|
|
|
|
|
|
if (*setting == _PASSWORD_EFMT1) { |
|
|
|
/* |
|
|
|
* "new"-style: |
|
|
|
* setting - underscore, 4 bytes of count, 4 bytes of salt |
|
|
|
* key - unlimited characters |
|
|
|
*/ |
|
|
|
for (i = 1, count = 0; i < 5; i++) |
|
|
|
count |= ascii_to_bin(setting[i]) << (i - 1) * 6; |
|
|
|
|
|
|
|
for (i = 5, salt = 0; i < 9; i++) |
|
|
|
salt |= ascii_to_bin(setting[i]) << (i - 5) * 6; |
|
|
|
|
|
|
|
while (*key) { |
|
|
|
/* |
|
|
|
* Encrypt the key with itself. |
|
|
|
*/ |
|
|
|
if (des_cipher((char *)keybuf, (char *)keybuf, 0, 1)) |
|
|
|
return(-1); |
|
|
|
/* |
|
|
|
* And XOR with the next 8 characters of the key. |
|
|
|
*/ |
|
|
|
q = (u_char *) keybuf; |
|
|
|
while (((q - (u_char *) keybuf) < sizeof(keybuf)) && |
|
|
|
*key) |
|
|
|
*q++ ^= *key++ << 1; |
|
|
|
|
|
|
|
if (des_setkey((char *) keybuf)) |
|
|
|
return(-1); |
|
|
|
} |
|
|
|
strlcpy((char *)output, setting, 10); |
|
|
|
|
|
|
|
/* |
|
|
|
* Double check that we weren't given a short setting. |
|
|
|
* If we were, the above code will probably have created |
|
|
|
* weird values for count and salt, but we don't really care. |
|
|
|
* Just make sure the output string doesn't have an extra |
|
|
|
* NUL in it. |
|
|
|
*/ |
|
|
|
p = output + strlen((const char *)output); |
|
|
|
} else { |
|
|
|
/* |
|
|
|
* "old"-style: |
|
|
|
* setting - 2 bytes of salt |
|
|
|
* key - up to 8 characters |
|
|
|
*/ |
|
|
|
count = 25; |
|
|
|
|
|
|
|
salt = (ascii_to_bin(setting[1]) << 6) |
|
|
|
| ascii_to_bin(setting[0]); |
|
|
|
|
|
|
|
output[0] = setting[0]; |
|
|
|
/* |
|
|
|
* If the encrypted password that the salt was extracted from |
|
|
|
* is only 1 character long, the salt will be corrupted. We |
|
|
|
* need to ensure that the output string doesn't have an extra |
|
|
|
* NUL in it! |
|
|
|
*/ |
|
|
|
output[1] = setting[1] ? setting[1] : output[0]; |
|
|
|
|
|
|
|
p = output + 2; |
|
|
|
} |
|
|
|
saltbits = _des_setup_salt(salt); |
|
|
|
|
|
|
|
/* |
|
|
|
* Do it. |
|
|
|
*/ |
|
|
|
if (_des_do_des(0, 0, &r0, &r1, count, saltbits)) |
|
|
|
return(-1); |
|
|
|
/* |
|
|
|
* Now encode the result... |
|
|
|
*/ |
|
|
|
l = (r0 >> 8); |
|
|
|
*p++ = ascii64[(l >> 18) & 0x3f]; |
|
|
|
*p++ = ascii64[(l >> 12) & 0x3f]; |
|
|
|
*p++ = ascii64[(l >> 6) & 0x3f]; |
|
|
|
*p++ = ascii64[l & 0x3f]; |
|
|
|
|
|
|
|
l = (r0 << 16) | ((r1 >> 16) & 0xffff); |
|
|
|
*p++ = ascii64[(l >> 18) & 0x3f]; |
|
|
|
*p++ = ascii64[(l >> 12) & 0x3f]; |
|
|
|
*p++ = ascii64[(l >> 6) & 0x3f]; |
|
|
|
*p++ = ascii64[l & 0x3f]; |
|
|
|
|
|
|
|
l = r1 << 2; |
|
|
|
*p++ = ascii64[(l >> 12) & 0x3f]; |
|
|
|
*p++ = ascii64[(l >> 6) & 0x3f]; |
|
|
|
*p++ = ascii64[l & 0x3f]; |
|
|
|
*p = 0; |
|
|
|
|
|
|
|
return(0); |
|
|
|
} |
|
|
|
|
|
|
|
char * |
|
|
|
crypt(const char *key, const char *setting) |
|
|
|
{ |
|
|
|
static u_char goutput[21]; |
|
|
|
extern char *bcrypt(const char *, const char *); |
|
|
|
|
|
|
|
if (setting[0] == '$') { |
|
|
|
switch (setting[1]) { |
|
|
|
case '2': |
|
|
@ -689,9 +13,4 @@ crypt(const char *key, const char *setting) |
|
|
|
return (NULL); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
memset(goutput, 0, sizeof(goutput)); |
|
|
|
if (crypt_hashpass(key, setting, goutput) != 0) |
|
|
|
return (NULL); |
|
|
|
return goutput; |
|
|
|
} |