Source code pulled from OpenBSD for OpenNTPD. The place to contribute to this code is via the OpenBSD CVS tree.
 
 
 
 
 
 

1497 lines
34 KiB

/* $OpenBSD: malloc.c,v 1.115 2009/01/03 12:58:28 djm Exp $ */
/*
* Copyright (c) 2008 Otto Moerbeek <otto@drijf.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Parts of this code, mainly the sub page sized chunk management code is
* derived from the malloc implementation with the following license:
*/
/*
* ----------------------------------------------------------------------------
* "THE BEER-WARE LICENSE" (Revision 42):
* <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you
* can do whatever you want with this stuff. If we meet some day, and you think
* this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
* ----------------------------------------------------------------------------
*/
/* #define MALLOC_STATS */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/mman.h>
#include <sys/uio.h>
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#ifdef MALLOC_STATS
#include <fcntl.h>
#endif
#include "thread_private.h"
#define MALLOC_MINSHIFT 4
#define MALLOC_MAXSHIFT 16
#if defined(__sparc__) && !defined(__sparcv9__)
#define MALLOC_PAGESHIFT (13U)
#else
#define MALLOC_PAGESHIFT (PGSHIFT)
#endif
#define MALLOC_PAGESIZE (1UL << MALLOC_PAGESHIFT)
#define MALLOC_MINSIZE (1UL << MALLOC_MINSHIFT)
#define MALLOC_PAGEMASK (MALLOC_PAGESIZE - 1)
#define MASK_POINTER(p) ((void *)(((uintptr_t)(p)) & ~MALLOC_PAGEMASK))
#define MALLOC_MAXCHUNK (1 << (MALLOC_PAGESHIFT-1))
#define MALLOC_MAXCACHE 256
#define MALLOC_DELAYED_CHUNKS 16 /* should be power of 2 */
/*
* When the P option is active, we move allocations between half a page
* and a whole page towards the end, subject to alignment constraints.
* This is the extra headroom we allow. Set to zero to be the most
* strict.
*/
#define MALLOC_LEEWAY 0
#define PAGEROUND(x) (((x) + (MALLOC_PAGEMASK)) & ~MALLOC_PAGEMASK)
/*
* What to use for Junk. This is the byte value we use to fill with
* when the 'J' option is enabled. Use SOME_JUNK right after alloc,
* and SOME_FREEJUNK right before free.
*/
#define SOME_JUNK 0xd0 /* as in "Duh" :-) */
#define SOME_FREEJUNK 0xdf
#define MMAP(sz) mmap(NULL, (size_t)(sz), PROT_READ | PROT_WRITE, \
MAP_ANON | MAP_PRIVATE, -1, (off_t) 0)
#define MMAPA(a,sz) mmap((a), (size_t)(sz), PROT_READ | PROT_WRITE, \
MAP_ANON | MAP_PRIVATE, -1, (off_t) 0)
struct region_info {
void *p; /* page; low bits used to mark chunks */
uintptr_t size; /* size for pages, or chunk_info pointer */
};
struct dir_info {
u_int32_t canary1;
struct region_info *r; /* region slots */
size_t regions_total; /* number of region slots */
size_t regions_bits; /* log2 of total */
size_t regions_free; /* number of free slots */
/* list of free chunk info structs */
struct chunk_info *chunk_info_list;
/* lists of chunks with free slots */
struct chunk_info *chunk_dir[MALLOC_MAXSHIFT];
size_t free_regions_size; /* free pages cached */
/* free pages cache */
struct region_info free_regions[MALLOC_MAXCACHE];
/* delayed free chunk slots */
void *delayed_chunks[MALLOC_DELAYED_CHUNKS];
#ifdef MALLOC_STATS
size_t inserts;
size_t insert_collisions;
size_t finds;
size_t find_collisions;
size_t deletes;
size_t delete_moves;
size_t cheap_realloc_tries;
size_t cheap_reallocs;
#define STATS_INC(x) ((x)++)
#define STATS_ZERO(x) ((x) = 0)
#else
#define STATS_INC(x) /* nothing */
#define STATS_ZERO(x) /* nothing */
#endif /* MALLOC_STATS */
u_int32_t canary2;
};
#define DIR_INFO_RSZ ((sizeof(struct dir_info) + MALLOC_PAGEMASK) & \
~MALLOC_PAGEMASK)
/*
* This structure describes a page worth of chunks.
*
* How many bits per u_long in the bitmap
*/
#define MALLOC_BITS (NBBY * sizeof(u_long))
struct chunk_info {
struct chunk_info *next; /* next on the free list */
void *page; /* pointer to the page */
u_int32_t canary;
u_short size; /* size of this page's chunks */
u_short shift; /* how far to shift for this size */
u_short free; /* how many free chunks */
u_short total; /* how many chunk */
/* which chunks are free */
u_long bits[(MALLOC_PAGESIZE / MALLOC_MINSIZE) / MALLOC_BITS];
};
struct malloc_readonly {
struct dir_info *g_pool; /* Main bookkeeping information */
int malloc_abort; /* abort() on error */
int malloc_freeprot; /* mprotect free pages PROT_NONE? */
int malloc_hint; /* call madvice on free pages? */
int malloc_junk; /* junk fill? */
int malloc_move; /* move allocations to end of page? */
int malloc_realloc; /* always realloc? */
int malloc_xmalloc; /* xmalloc behaviour? */
int malloc_zero; /* zero fill? */
size_t malloc_guard; /* use guard pages after allocations? */
u_int malloc_cache; /* free pages we cache */
#ifdef MALLOC_STATS
int malloc_stats; /* dump statistics at end */
#endif
u_int32_t malloc_canary; /* Matched against ones in g_pool */
};
/* This object is mapped PROT_READ after initialisation to prevent tampering */
static union {
struct malloc_readonly mopts;
u_char _pad[MALLOC_PAGESIZE];
} malloc_readonly __attribute__((aligned(MALLOC_PAGESIZE)));
#define mopts malloc_readonly.mopts
#define g_pool mopts.g_pool
char *malloc_options; /* compile-time options */
static char *malloc_func; /* current function */
static int malloc_active; /* status of malloc */
static size_t malloc_guarded; /* bytes used for guards */
static size_t malloc_used; /* bytes allocated */
static size_t rbytesused; /* random bytes used */
static u_char rbytes[512]; /* random bytes */
static u_char getrbyte(void);
extern char *__progname;
/* low bits of r->p determine size: 0 means >= page size and p->size holding
* real size, otherwise r->size is a shift count, or 1 for malloc(0)
*/
#define REALSIZE(sz, r) \
(sz) = (uintptr_t)(r)->p & MALLOC_PAGEMASK, \
(sz) = ((sz) == 0 ? (r)->size : ((sz) == 1 ? 0 : (1 << ((sz)-1))))
static inline size_t
hash(void *p)
{
size_t sum;
union {
uintptr_t p;
unsigned short a[sizeof(void *) / sizeof(short)];
} u;
u.p = (uintptr_t)p >> MALLOC_PAGESHIFT;
sum = u.a[0];
sum = (sum << 7) - sum + u.a[1];
#ifdef __LP64__
sum = (sum << 7) - sum + u.a[2];
sum = (sum << 7) - sum + u.a[3];
#endif
return sum;
}
#ifdef MALLOC_STATS
static void
dump_chunk(int fd, struct chunk_info *p, int fromfreelist)
{
char buf[64];
while (p) {
snprintf(buf, sizeof(buf), "chunk %d %d/%d %p\n", p->size,
p->free, p->total, p->page);
write(fd, buf, strlen(buf));
if (!fromfreelist)
break;
p = p->next;
if (p != NULL) {
snprintf(buf, sizeof(buf), " ");
write(fd, buf, strlen(buf));
}
}
}
static void
dump_free_chunk_info(int fd, struct dir_info *d)
{
char buf[64];
int i;
snprintf(buf, sizeof(buf), "Free chunk structs:\n");
write(fd, buf, strlen(buf));
for (i = 0; i < MALLOC_MAXSHIFT; i++) {
struct chunk_info *p = d->chunk_dir[i];
if (p != NULL) {
snprintf(buf, sizeof(buf), "%2d) ", i);
write(fd, buf, strlen(buf));
dump_chunk(fd, p, 1);
}
}
}
static void
dump_free_page_info(int fd, struct dir_info *d)
{
char buf[64];
int i;
snprintf(buf, sizeof(buf), "Free pages cached: %zu\n",
d->free_regions_size);
write(fd, buf, strlen(buf));
for (i = 0; i < mopts.malloc_cache; i++) {
if (d->free_regions[i].p != NULL) {
snprintf(buf, sizeof(buf), "%2d) ", i);
write(fd, buf, strlen(buf));
snprintf(buf, sizeof(buf), "free at %p: %zu\n",
d->free_regions[i].p, d->free_regions[i].size);
write(fd, buf, strlen(buf));
}
}
}
static void
malloc_dump1(int fd, struct dir_info *d)
{
char buf[64];
size_t i, realsize;
snprintf(buf, sizeof(buf), "Malloc dir of %s at %p\n", __progname, d);
write(fd, buf, strlen(buf));
if (d == NULL)
return;
snprintf(buf, sizeof(buf), "Regions slots %zu\n", d->regions_total);
write(fd, buf, strlen(buf));
snprintf(buf, sizeof(buf), "Finds %zu/%zu %f\n", d->finds,
d->find_collisions,
1.0 + (double)d->find_collisions / d->finds);
write(fd, buf, strlen(buf));
snprintf(buf, sizeof(buf), "Inserts %zu/%zu %f\n", d->inserts,
d->insert_collisions,
1.0 + (double)d->insert_collisions / d->inserts);
write(fd, buf, strlen(buf));
snprintf(buf, sizeof(buf), "Deletes %zu/%zu\n", d->deletes,
d->delete_moves);
write(fd, buf, strlen(buf));
snprintf(buf, sizeof(buf), "Cheap reallocs %zu/%zu\n",
d->cheap_reallocs, d->cheap_realloc_tries);
write(fd, buf, strlen(buf));
snprintf(buf, sizeof(buf), "Regions slots free %zu\n", d->regions_free);
write(fd, buf, strlen(buf));
for (i = 0; i < d->regions_total; i++) {
if (d->r[i].p != NULL) {
size_t h = hash(d->r[i].p) &
(d->regions_total - 1);
snprintf(buf, sizeof(buf), "%4zx) #%zx %zd ",
i, h, h - i);
write(fd, buf, strlen(buf));
REALSIZE(realsize, &d->r[i]);
if (realsize > MALLOC_MAXCHUNK) {
snprintf(buf, sizeof(buf),
"%p: %zu\n", d->r[i].p, realsize);
write(fd, buf, strlen(buf));
} else
dump_chunk(fd,
(struct chunk_info *)d->r[i].size, 0);
}
}
dump_free_chunk_info(fd, d);
dump_free_page_info(fd, d);
snprintf(buf, sizeof(buf), "In use %zu\n", malloc_used);
write(fd, buf, strlen(buf));
snprintf(buf, sizeof(buf), "Guarded %zu\n", malloc_guarded);
write(fd, buf, strlen(buf));
}
void
malloc_dump(int fd)
{
malloc_dump1(fd, g_pool);
}
static void
malloc_exit(void)
{
static const char q[] = "malloc() warning: Couldn't dump stats\n";
int save_errno = errno, fd;
fd = open("malloc.out", O_RDWR|O_APPEND);
if (fd != -1) {
malloc_dump(fd);
close(fd);
} else
write(STDERR_FILENO, q, sizeof(q) - 1);
errno = save_errno;
}
#endif /* MALLOC_STATS */
static void
wrterror(char *p)
{
char *q = " error: ";
struct iovec iov[5];
iov[0].iov_base = __progname;
iov[0].iov_len = strlen(__progname);
iov[1].iov_base = malloc_func;
iov[1].iov_len = strlen(malloc_func);
iov[2].iov_base = q;
iov[2].iov_len = strlen(q);
iov[3].iov_base = p;
iov[3].iov_len = strlen(p);
iov[4].iov_base = "\n";
iov[4].iov_len = 1;
writev(STDERR_FILENO, iov, 5);
#ifdef MALLOC_STATS
if (mopts.malloc_stats)
malloc_dump(STDERR_FILENO);
#endif /* MALLOC_STATS */
//malloc_active--;
if (mopts.malloc_abort)
abort();
}
/*
* Cache maintenance. We keep at most malloc_cache pages cached.
* If the cache is becoming full, unmap pages in the cache for real,
* and then add the region to the cache
* Opposed to the regular region data structure, the sizes in the
* cache are in MALLOC_PAGESIZE units.
*/
static void
unmap(struct dir_info *d, void *p, size_t sz)
{
size_t psz = sz >> MALLOC_PAGESHIFT;
size_t rsz, tounmap;
struct region_info *r;
u_int i, offset;
if (sz != PAGEROUND(sz)) {
wrterror("munmap round");
return;
}
if (psz > mopts.malloc_cache) {
if (munmap(p, sz))
wrterror("munmap");
malloc_used -= sz;
return;
}
tounmap = 0;
rsz = mopts.malloc_cache - d->free_regions_size;
if (psz > rsz)
tounmap = psz - rsz;
offset = getrbyte();
for (i = 0; tounmap > 0 && i < mopts.malloc_cache; i++) {
r = &d->free_regions[(i + offset) & (mopts.malloc_cache - 1)];
if (r->p != NULL) {
rsz = r->size << MALLOC_PAGESHIFT;
if (munmap(r->p, rsz))
wrterror("munmap");
r->p = NULL;
if (tounmap > r->size)
tounmap -= r->size;
else
tounmap = 0;
d->free_regions_size -= r->size;
r->size = 0;
malloc_used -= rsz;
}
}
if (tounmap > 0)
wrterror("malloc cache underflow");
for (i = 0; i < mopts.malloc_cache; i++) {
r = &d->free_regions[i];
if (r->p == NULL) {
if (mopts.malloc_hint)
madvise(p, sz, MADV_FREE);
if (mopts.malloc_freeprot)
mprotect(p, sz, PROT_NONE);
r->p = p;
r->size = psz;
d->free_regions_size += psz;
break;
}
}
if (i == mopts.malloc_cache)
wrterror("malloc free slot lost");
if (d->free_regions_size > mopts.malloc_cache)
wrterror("malloc cache overflow");
}
static void
zapcacheregion(struct dir_info *d, void *p)
{
u_int i;
struct region_info *r;
size_t rsz;
for (i = 0; i < mopts.malloc_cache; i++) {
r = &d->free_regions[i];
if (r->p == p) {
rsz = r->size << MALLOC_PAGESHIFT;
if (munmap(r->p, rsz))
wrterror("munmap");
r->p = NULL;
d->free_regions_size -= r->size;
r->size = 0;
malloc_used -= rsz;
}
}
}
static void *
map(struct dir_info *d, size_t sz, int zero_fill)
{
size_t psz = sz >> MALLOC_PAGESHIFT;
struct region_info *r, *big = NULL;
u_int i, offset;
void *p;
if (mopts.malloc_canary != (d->canary1 ^ (u_int32_t)d) ||
d->canary1 != ~d->canary2)
wrterror("internal struct corrupt");
if (sz != PAGEROUND(sz)) {
wrterror("map round");
return NULL;
}
if (psz > d->free_regions_size) {
p = MMAP(sz);
if (p != MAP_FAILED)
malloc_used += sz;
/* zero fill not needed */
return p;
}
offset = getrbyte();
for (i = 0; i < mopts.malloc_cache; i++) {
r = &d->free_regions[(i + offset) & (mopts.malloc_cache - 1)];
if (r->p != NULL) {
if (r->size == psz) {
p = r->p;
if (mopts.malloc_freeprot)
mprotect(p, sz, PROT_READ | PROT_WRITE);
if (mopts.malloc_hint)
madvise(p, sz, MADV_NORMAL);
r->p = NULL;
r->size = 0;
d->free_regions_size -= psz;
if (zero_fill)
memset(p, 0, sz);
else if (mopts.malloc_junk &&
mopts.malloc_freeprot)
memset(p, SOME_FREEJUNK, sz);
return p;
} else if (r->size > psz)
big = r;
}
}
if (big != NULL) {
r = big;
p = (char *)r->p + ((r->size - psz) << MALLOC_PAGESHIFT);
if (mopts.malloc_freeprot)
mprotect(p, sz, PROT_READ | PROT_WRITE);
if (mopts.malloc_hint)
madvise(p, sz, MADV_NORMAL);
r->size -= psz;
d->free_regions_size -= psz;
if (zero_fill)
memset(p, 0, sz);
return p;
}
p = MMAP(sz);
if (p != MAP_FAILED)
malloc_used += sz;
if (d->free_regions_size > mopts.malloc_cache)
wrterror("malloc cache");
/* zero fill not needed */
return p;
}
static void
rbytes_init(void)
{
arc4random_buf(rbytes, sizeof(rbytes));
rbytesused = 0;
}
static u_char
getrbyte(void)
{
if (rbytesused >= sizeof(rbytes))
rbytes_init();
return rbytes[rbytesused++];
}
/*
* Initialize a dir_info, which should have been cleared by caller
*/
static int
omalloc_init(struct dir_info **dp)
{
char *p, b[64];
int i, j;
size_t d_avail, regioninfo_size;
struct dir_info *d;
rbytes_init();
/*
* Default options
*/
mopts.malloc_abort = 1;
mopts.malloc_move = 1;
mopts.malloc_cache = 64;
for (i = 0; i < 3; i++) {
switch (i) {
case 0:
j = readlink("/etc/malloc.conf", b, sizeof b - 1);
if (j <= 0)
continue;
b[j] = '\0';
p = b;
break;
case 1:
if (issetugid() == 0)
p = getenv("MALLOC_OPTIONS");
else
continue;
break;
case 2:
p = malloc_options;
break;
default:
p = NULL;
}
for (; p != NULL && *p != '\0'; p++) {
switch (*p) {
case '>':
mopts.malloc_cache <<= 1;
if (mopts.malloc_cache > MALLOC_MAXCACHE)
mopts.malloc_cache = MALLOC_MAXCACHE;
break;
case '<':
mopts.malloc_cache >>= 1;
break;
case 'a':
mopts.malloc_abort = 0;
break;
case 'A':
mopts.malloc_abort = 1;
break;
#ifdef MALLOC_STATS
case 'd':
mopts.malloc_stats = 0;
break;
case 'D':
mopts.malloc_stats = 1;
break;
#endif /* MALLOC_STATS */
case 'f':
mopts.malloc_freeprot = 0;
break;
case 'F':
mopts.malloc_freeprot = 1;
break;
case 'g':
mopts.malloc_guard = 0;
break;
case 'G':
mopts.malloc_guard = MALLOC_PAGESIZE;
break;
case 'h':
mopts.malloc_hint = 0;
break;
case 'H':
mopts.malloc_hint = 1;
break;
case 'j':
mopts.malloc_junk = 0;
break;
case 'J':
mopts.malloc_junk = 1;
break;
case 'n':
case 'N':
break;
case 'p':
mopts.malloc_move = 0;
break;
case 'P':
mopts.malloc_move = 1;
break;
case 'r':
mopts.malloc_realloc = 0;
break;
case 'R':
mopts.malloc_realloc = 1;
break;
case 'x':
mopts.malloc_xmalloc = 0;
break;
case 'X':
mopts.malloc_xmalloc = 1;
break;
case 'z':
mopts.malloc_zero = 0;
break;
case 'Z':
mopts.malloc_zero = 1;
break;
default: {
static const char q[] = "malloc() warning: "
"unknown char in MALLOC_OPTIONS\n";
write(STDERR_FILENO, q, sizeof(q) - 1);
break;
}
}
}
}
/*
* We want junk in the entire allocation, and zero only in the part
* the user asked for.
*/
if (mopts.malloc_zero)
mopts.malloc_junk = 1;
#ifdef MALLOC_STATS
if (mopts.malloc_stats && (atexit(malloc_exit) == -1)) {
static const char q[] = "malloc() warning: atexit(2) failed."
" Will not be able to dump stats on exit\n";
write(STDERR_FILENO, q, sizeof(q) - 1);
}
#endif /* MALLOC_STATS */
while ((mopts.malloc_canary = arc4random()) == 0)
;
/*
* Allocate dir_info with a guard page on either side. Also
* randomise offset inside the page at which the dir_info
* lies (subject to alignment by 1 << MALLOC_MINSHIFT)
*/
if ((p = MMAP(DIR_INFO_RSZ + (MALLOC_PAGESIZE * 2))) == NULL)
return -1;
mprotect(p, MALLOC_PAGESIZE, PROT_NONE);
mprotect(p + MALLOC_PAGESIZE + DIR_INFO_RSZ,
MALLOC_PAGESIZE, PROT_NONE);
d_avail = (DIR_INFO_RSZ - sizeof(*d)) >> MALLOC_MINSHIFT;
d = (struct dir_info *)(p + MALLOC_PAGESIZE +
(arc4random_uniform(d_avail) << MALLOC_MINSHIFT));
d->regions_bits = 9;
d->regions_free = d->regions_total = 1 << d->regions_bits;
regioninfo_size = d->regions_total * sizeof(struct region_info);
d->r = MMAP(regioninfo_size);
if (d->r == MAP_FAILED) {
wrterror("malloc init mmap failed");
d->regions_total = 0;
return 1;
}
malloc_used += regioninfo_size;
memset(d->r, 0, regioninfo_size);
d->canary1 = mopts.malloc_canary ^ (u_int32_t)d;
d->canary2 = ~d->canary1;
*dp = d;
/*
* Options have been set and will never be reset.
* Prevent further tampering with them.
*/
if (((uintptr_t)&malloc_readonly & MALLOC_PAGEMASK) == 0)
mprotect(&malloc_readonly, sizeof(malloc_readonly), PROT_READ);
return 0;
}
static int
omalloc_grow(struct dir_info *d)
{
size_t newbits;
size_t newtotal;
size_t newsize;
size_t mask;
size_t i;
struct region_info *p;
if (d->regions_total > SIZE_MAX / sizeof(struct region_info) / 2 )
return 1;
newbits = d->regions_bits + 1;
newtotal = d->regions_total * 2;
newsize = newtotal * sizeof(struct region_info);
mask = newtotal - 1;
p = MMAP(newsize);
if (p == MAP_FAILED)
return 1;
malloc_used += newsize;
memset(p, 0, newsize);
STATS_ZERO(d->inserts);
STATS_ZERO(d->insert_collisions);
for (i = 0; i < d->regions_total; i++) {
void *q = d->r[i].p;
if (q != NULL) {
size_t index = hash(q) & mask;
STATS_INC(d->inserts);
while (p[index].p != NULL) {
index = (index - 1) & mask;
STATS_INC(d->insert_collisions);
}
p[index] = d->r[i];
}
}
/* avoid pages containing meta info to end up in cache */
if (munmap(d->r, d->regions_total * sizeof(struct region_info)))
wrterror("munmap");
else
malloc_used -= d->regions_total * sizeof(struct region_info);
d->regions_free = d->regions_free + d->regions_total;
d->regions_total = newtotal;
d->regions_bits = newbits;
d->r = p;
return 0;
}
static struct chunk_info *
alloc_chunk_info(struct dir_info *d)
{
struct chunk_info *p;
int i;
if (d->chunk_info_list == NULL) {
p = MMAP(MALLOC_PAGESIZE);
if (p == MAP_FAILED)
return NULL;
malloc_used += MALLOC_PAGESIZE;
for (i = 0; i < MALLOC_PAGESIZE / sizeof(*p); i++) {
p[i].next = d->chunk_info_list;
d->chunk_info_list = &p[i];
}
}
p = d->chunk_info_list;
d->chunk_info_list = p->next;
memset(p, 0, sizeof *p);
p->canary = d->canary1;
return p;
}
static void
put_chunk_info(struct dir_info *d, struct chunk_info *p)
{
p->next = d->chunk_info_list;
d->chunk_info_list = p;
}
static int
insert(struct dir_info *d, void *p, size_t sz)
{
size_t index;
size_t mask;
void *q;
if (d->regions_free * 4 < d->regions_total) {
if (omalloc_grow(d))
return 1;
}
mask = d->regions_total - 1;
index = hash(p) & mask;
q = d->r[index].p;
STATS_INC(d->inserts);
while (q != NULL) {
index = (index - 1) & mask;
q = d->r[index].p;
STATS_INC(d->insert_collisions);
}
d->r[index].p = p;
d->r[index].size = sz;
d->regions_free--;
return 0;
}
static struct region_info *
find(struct dir_info *d, void *p)
{
size_t index;
size_t mask = d->regions_total - 1;
void *q, *r;
if (mopts.malloc_canary != (d->canary1 ^ (u_int32_t)d) ||
d->canary1 != ~d->canary2)
wrterror("internal struct corrupt");
p = MASK_POINTER(p);
index = hash(p) & mask;
r = d->r[index].p;
q = MASK_POINTER(r);
STATS_INC(d->finds);
while (q != p && r != NULL) {
index = (index - 1) & mask;
r = d->r[index].p;
q = MASK_POINTER(r);
STATS_INC(d->find_collisions);
}
return q == p ? &d->r[index] : NULL;
}
static void
delete(struct dir_info *d, struct region_info *ri)
{
/* algorithm R, Knuth Vol III section 6.4 */
size_t mask = d->regions_total - 1;
size_t i, j, r;
if (d->regions_total & (d->regions_total - 1))
wrterror("regions_total not 2^x");
d->regions_free++;
STATS_INC(g_pool->deletes);
i = ri - d->r;
for (;;) {
d->r[i].p = NULL;
d->r[i].size = 0;
j = i;
for (;;) {
i = (i - 1) & mask;
if (d->r[i].p == NULL)
return;
r = hash(d->r[i].p) & mask;
if ((i <= r && r < j) || (r < j && j < i) ||
(j < i && i <= r))
continue;
d->r[j] = d->r[i];
STATS_INC(g_pool->delete_moves);
break;
}
}
}
/*
* Allocate a page of chunks
*/
static struct chunk_info *
omalloc_make_chunks(struct dir_info *d, int bits)
{
struct chunk_info *bp;
void *pp;
long i, k;
/* Allocate a new bucket */
pp = map(d, MALLOC_PAGESIZE, 0);
if (pp == MAP_FAILED)
return NULL;
bp = alloc_chunk_info(d);
if (bp == NULL) {
unmap(d, pp, MALLOC_PAGESIZE);
return NULL;
}
/* memory protect the page allocated in the malloc(0) case */
if (bits == 0) {
bp->size = 0;
bp->shift = 1;
i = MALLOC_MINSIZE - 1;
while (i >>= 1)
bp->shift++;
bp->total = bp->free = MALLOC_PAGESIZE >> bp->shift;
bp->page = pp;
k = mprotect(pp, MALLOC_PAGESIZE, PROT_NONE);
if (k < 0) {
unmap(d, pp, MALLOC_PAGESIZE);
put_chunk_info(d, bp);
return NULL;
}
} else {
bp->size = (1UL << bits);
bp->shift = bits;
bp->total = bp->free = MALLOC_PAGESIZE >> bits;
bp->page = pp;
}
/* set all valid bits in the bitmap */
k = bp->total;
i = 0;
/* Do a bunch at a time */
for (; (k - i) >= MALLOC_BITS; i += MALLOC_BITS)
bp->bits[i / MALLOC_BITS] = ~0UL;
for (; i < k; i++)
bp->bits[i / MALLOC_BITS] |= 1UL << (i % MALLOC_BITS);
bp->next = d->chunk_dir[bits];
d->chunk_dir[bits] = bp;
bits++;
if ((uintptr_t)pp & bits)
wrterror("pp & bits");
insert(d, (void *)((uintptr_t)pp | bits), (uintptr_t)bp);
return bp;
}
/*
* Allocate a chunk
*/
static void *
malloc_bytes(struct dir_info *d, size_t size)
{
int i, j;
size_t k;
u_long u, *lp;
struct chunk_info *bp;
if (mopts.malloc_canary != (d->canary1 ^ (u_int32_t)d) ||
d->canary1 != ~d->canary2)
wrterror("internal struct corrupt");
/* Don't bother with anything less than this */
/* unless we have a malloc(0) requests */
if (size != 0 && size < MALLOC_MINSIZE)
size = MALLOC_MINSIZE;
/* Find the right bucket */
if (size == 0)
j = 0;
else {
j = MALLOC_MINSHIFT;
i = (size - 1) >> (MALLOC_MINSHIFT - 1);
while (i >>= 1)
j++;
}
/* If it's empty, make a page more of that size chunks */
bp = d->chunk_dir[j];
if (bp == NULL && (bp = omalloc_make_chunks(d, j)) == NULL)
return NULL;
if (bp->canary != d->canary1)
wrterror("chunk info corrupted");
/* Find first word of bitmap which isn't empty */
for (lp = bp->bits; !*lp; lp++)
/* EMPTY */;
/* Find that bit, and tweak it */
u = 1;
k = 0;
while (!(*lp & u)) {
u += u;
k++;
}
/* advance a random # of positions */
i = (getrbyte() & (MALLOC_DELAYED_CHUNKS - 1)) % bp->free;
while (i > 0) {
u += u;
k++;
if (k >= MALLOC_BITS) {
lp++;
u = 1;
k = 0;
}
if (lp - bp->bits > (bp->total - 1) / MALLOC_BITS) {
wrterror("chunk overflow");
errno = EFAULT;
return (NULL);
}
if (*lp & u)
i--;
}
*lp ^= u;
/* If there are no more free, remove from free-list */
if (!--bp->free) {
d->chunk_dir[j] = bp->next;
bp->next = NULL;
}
/* Adjust to the real offset of that chunk */
k += (lp - bp->bits) * MALLOC_BITS;
k <<= bp->shift;
if (mopts.malloc_junk && bp->size > 0)
memset((char *)bp->page + k, SOME_JUNK, bp->size);
return ((char *)bp->page + k);
}
/*
* Free a chunk, and possibly the page it's on, if the page becomes empty.
*/
static void
free_bytes(struct dir_info *d, struct region_info *r, void *ptr)
{
struct chunk_info *info, **mp;
long i;
info = (struct chunk_info *)r->size;
if (info->canary != d->canary1)
wrterror("chunk info corrupted");
/* Find the chunk number on the page */
i = ((uintptr_t)ptr & MALLOC_PAGEMASK) >> info->shift;
if ((uintptr_t)ptr & ((1UL << (info->shift)) - 1)) {
wrterror("modified chunk-pointer");
return;
}
if (info->bits[i / MALLOC_BITS] & (1UL << (i % MALLOC_BITS))) {
wrterror("chunk is already free");
return;
}
info->bits[i / MALLOC_BITS] |= 1UL << (i % MALLOC_BITS);
info->free++;
if (info->size != 0)
mp = d->chunk_dir + info->shift;
else
mp = d->chunk_dir;
if (info->free == 1) {
/* Page became non-full */
/* Insert in address order */
while (*mp != NULL && (*mp)->next != NULL &&
(*mp)->next->page < info->page)
mp = &(*mp)->next;
info->next = *mp;
*mp = info;
return;
}
if (info->free != info->total)
return;
/* Find & remove this page in the queue */
while (*mp != info) {
mp = &((*mp)->next);
if (!*mp) {
wrterror("not on queue");
errno = EFAULT;
return;
}
}
*mp = info->next;
if (info->size == 0 && !mopts.malloc_freeprot)
mprotect(info->page, MALLOC_PAGESIZE, PROT_READ | PROT_WRITE);
unmap(d, info->page, MALLOC_PAGESIZE);
delete(d, r);
put_chunk_info(d, info);
}
static void *
omalloc(size_t sz, int zero_fill)
{
void *p;
size_t psz;
if (sz > MALLOC_MAXCHUNK) {
if (sz >= SIZE_MAX - mopts.malloc_guard - MALLOC_PAGESIZE) {
errno = ENOMEM;
return NULL;
}
sz += mopts.malloc_guard;
psz = PAGEROUND(sz);
p = map(g_pool, psz, zero_fill);
if (p == MAP_FAILED) {
errno = ENOMEM;
return NULL;
}
if (insert(g_pool, p, sz)) {
unmap(g_pool, p, psz);
errno = ENOMEM;
return NULL;
}
if (mopts.malloc_guard) {
if (mprotect((char *)p + psz - mopts.malloc_guard,
mopts.malloc_guard, PROT_NONE))
wrterror("mprotect");
malloc_guarded += mopts.malloc_guard;
}
if (mopts.malloc_move &&
sz - mopts.malloc_guard < MALLOC_PAGESIZE -
MALLOC_LEEWAY) {
/* fill whole allocation */
if (mopts.malloc_junk)
memset(p, SOME_JUNK, psz - mopts.malloc_guard);
/* shift towards the end */
p = ((char *)p) + ((MALLOC_PAGESIZE - MALLOC_LEEWAY -
(sz - mopts.malloc_guard)) & ~(MALLOC_MINSIZE-1));
/* fill zeros if needed and overwritten above */
if (zero_fill && mopts.malloc_junk)
memset(p, 0, sz - mopts.malloc_guard);
} else {
if (mopts.malloc_junk) {
if (zero_fill)
memset(p + sz - mopts.malloc_guard,
SOME_JUNK, psz - sz);
else
memset(p, SOME_JUNK,
psz - mopts.malloc_guard);
}
}
} else {
/* takes care of SOME_JUNK */
p = malloc_bytes(g_pool, sz);
if (zero_fill && p != NULL && sz > 0)
memset(p, 0, sz);
}
return p;
}
/*
* Common function for handling recursion. Only
* print the error message once, to avoid making the problem
* potentially worse.
*/
static void
malloc_recurse(void)
{
static int noprint;
if (noprint == 0) {
noprint = 1;
wrterror("recursive call");
}
malloc_active--;
_MALLOC_UNLOCK();
errno = EDEADLK;
}
static int
malloc_init(void)
{
if (omalloc_init(&g_pool)) {
_MALLOC_UNLOCK();
if (mopts.malloc_xmalloc)
wrterror("out of memory");
errno = ENOMEM;
return -1;
}
return 0;
}
void *
malloc(size_t size)
{
void *r;
int saved_errno = errno;
_MALLOC_LOCK();
malloc_func = " in malloc():";
if (g_pool == NULL) {
if (malloc_init() != 0)
return NULL;
}
if (malloc_active++) {
malloc_recurse();
return NULL;
}
r = omalloc(size, mopts.malloc_zero);
malloc_active--;
_MALLOC_UNLOCK();
if (r == NULL && mopts.malloc_xmalloc) {
wrterror("out of memory");
errno = ENOMEM;
}
if (r != NULL)
errno = saved_errno;
return r;
}
static void
ofree(void *p)
{
struct region_info *r;
size_t sz;
r = find(g_pool, p);
if (r == NULL) {
wrterror("bogus pointer (double free?)");
return;
}
REALSIZE(sz, r);
if (sz > MALLOC_MAXCHUNK) {
if (sz - mopts.malloc_guard >= MALLOC_PAGESIZE -
MALLOC_LEEWAY) {
if (r->p != p) {
wrterror("bogus pointer");
return;
}
} else {
#if notyetbecause_of_realloc
/* shifted towards the end */
if (p != ((char *)r->p) + ((MALLOC_PAGESIZE -
MALLOC_MINSIZE - sz - mopts.malloc_guard) &
~(MALLOC_MINSIZE-1))) {
}
#endif
p = r->p;
}
if (mopts.malloc_guard) {
if (sz < mopts.malloc_guard)
wrterror("guard size");
if (!mopts.malloc_freeprot) {
if (mprotect((char *)p + PAGEROUND(sz) -
mopts.malloc_guard, mopts.malloc_guard,
PROT_READ | PROT_WRITE))
wrterror("mprotect");
}
malloc_guarded -= mopts.malloc_guard;
}
if (mopts.malloc_junk && !mopts.malloc_freeprot)
memset(p, SOME_FREEJUNK,
PAGEROUND(sz) - mopts.malloc_guard);
unmap(g_pool, p, PAGEROUND(sz));
delete(g_pool, r);
} else {
void *tmp;
int i;
if (mopts.malloc_junk && sz > 0)
memset(p, SOME_FREEJUNK, sz);
if (!mopts.malloc_freeprot) {
i = getrbyte() & (MALLOC_DELAYED_CHUNKS - 1);
tmp = p;
p = g_pool->delayed_chunks[i];
g_pool->delayed_chunks[i] = tmp;
}
if (p != NULL) {
r = find(g_pool, p);
if (r == NULL) {
wrterror("bogus pointer (double free?)");
return;
}
free_bytes(g_pool, r, p);
}
}
}
void
free(void *ptr)
{
int saved_errno = errno;
/* This is legal. */
if (ptr == NULL)
return;
_MALLOC_LOCK();
malloc_func = " in free():";
if (g_pool == NULL) {
_MALLOC_UNLOCK();
wrterror("free() called before allocation");
return;
}
if (malloc_active++) {
malloc_recurse();
return;
}
ofree(ptr);
malloc_active--;
_MALLOC_UNLOCK();
errno = saved_errno;
}
static void *
orealloc(void *p, size_t newsz)
{
struct region_info *r;
size_t oldsz, goldsz, gnewsz;
void *q;
if (p == NULL)
return omalloc(newsz, 0);
r = find(g_pool, p);
if (r == NULL) {
wrterror("bogus pointer (double free?)");
return NULL;
}
if (newsz >= SIZE_MAX - mopts.malloc_guard - MALLOC_PAGESIZE) {
errno = ENOMEM;
return NULL;
}
REALSIZE(oldsz, r);
goldsz = oldsz;
if (oldsz > MALLOC_MAXCHUNK) {
if (oldsz < mopts.malloc_guard)
wrterror("guard size");
oldsz -= mopts.malloc_guard;
}
gnewsz = newsz;
if (gnewsz > MALLOC_MAXCHUNK)
gnewsz += mopts.malloc_guard;
if (newsz > MALLOC_MAXCHUNK && oldsz > MALLOC_MAXCHUNK && p == r->p &&
!mopts.malloc_realloc) {
size_t roldsz = PAGEROUND(goldsz);
size_t rnewsz = PAGEROUND(gnewsz);
if (rnewsz > roldsz) {
if (!mopts.malloc_guard) {
STATS_INC(g_pool.cheap_realloc_tries);
zapcacheregion(g_pool, p + roldsz);
q = MMAPA(p + roldsz, rnewsz - roldsz);
if (q == p + roldsz) {
malloc_used += rnewsz - roldsz;
if (mopts.malloc_junk)
memset(q, SOME_JUNK,
rnewsz - roldsz);
r->size = newsz;
STATS_INC(g_pool->cheap_reallocs);
return p;
} else if (q != MAP_FAILED)
munmap(q, rnewsz - roldsz);
}
} else if (rnewsz < roldsz) {
if (mopts.malloc_guard) {
if (mprotect((char *)p + roldsz -
mopts.malloc_guard, mopts.malloc_guard,
PROT_READ | PROT_WRITE))
wrterror("mprotect");
if (mprotect((char *)p + rnewsz -
mopts.malloc_guard, mopts.malloc_guard,
PROT_NONE))
wrterror("mprotect");
}
unmap(g_pool, (char *)p + rnewsz, roldsz - rnewsz);
r->size = gnewsz;
return p;
} else {
if (newsz > oldsz && mopts.malloc_junk)
memset((char *)p + newsz, SOME_JUNK,
rnewsz - mopts.malloc_guard - newsz);
r->size = gnewsz;
return p;
}
}
if (newsz <= oldsz && newsz > oldsz / 2 && !mopts.malloc_realloc) {
if (mopts.malloc_junk && newsz > 0)
memset((char *)p + newsz, SOME_JUNK, oldsz - newsz);
return p;
} else if (newsz != oldsz || mopts.malloc_realloc) {
q = omalloc(newsz, 0);
if (q == NULL)
return NULL;
if (newsz != 0 && oldsz != 0)
memcpy(q, p, oldsz < newsz ? oldsz : newsz);
ofree(p);
return q;
} else
return p;
}
void *
realloc(void *ptr, size_t size)
{
void *r;
int saved_errno = errno;
_MALLOC_LOCK();
malloc_func = " in realloc():";
if (g_pool == NULL) {
if (malloc_init() != 0)
return NULL;
}
if (malloc_active++) {
malloc_recurse();
return NULL;
}
r = orealloc(ptr, size);
malloc_active--;
_MALLOC_UNLOCK();
if (r == NULL && mopts.malloc_xmalloc) {
wrterror("out of memory");
errno = ENOMEM;
}
if (r != NULL)
errno = saved_errno;
return r;
}
#define MUL_NO_OVERFLOW (1UL << (sizeof(size_t) * 4))
void *
calloc(size_t nmemb, size_t size)
{
void *r;
int saved_errno = errno;
_MALLOC_LOCK();
malloc_func = " in calloc():";
if (g_pool == NULL) {
if (malloc_init() != 0)
return NULL;
}
if ((nmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
nmemb > 0 && SIZE_MAX / nmemb < size) {
_MALLOC_UNLOCK();
if (mopts.malloc_xmalloc)
wrterror("out of memory");
errno = ENOMEM;
return NULL;
}
if (malloc_active++) {
malloc_recurse();
return NULL;
}
size *= nmemb;
r = omalloc(size, 1);
malloc_active--;
_MALLOC_UNLOCK();
if (r == NULL && mopts.malloc_xmalloc) {
wrterror("out of memory");
errno = ENOMEM;
}
if (r != NULL)
errno = saved_errno;
return r;
}