Source code pulled from OpenBSD for OpenNTPD. The place to contribute to this code is via the OpenBSD CVS tree.
 
 
 
 
 
 

2369 lines
55 KiB

/* $OpenBSD: malloc.c,v 1.230 2017/09/11 18:32:31 otto Exp $ */
/*
* Copyright (c) 2008, 2010, 2011, 2016 Otto Moerbeek <otto@drijf.net>
* Copyright (c) 2012 Matthew Dempsky <matthew@openbsd.org>
* Copyright (c) 2008 Damien Miller <djm@openbsd.org>
* Copyright (c) 2000 Poul-Henning Kamp <phk@FreeBSD.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* If we meet some day, and you think this stuff is worth it, you
* can buy me a beer in return. Poul-Henning Kamp
*/
/* #define MALLOC_STATS */
#include <sys/types.h>
#include <sys/param.h> /* PAGE_SHIFT ALIGN */
#include <sys/queue.h>
#include <sys/mman.h>
#include <sys/uio.h>
#include <errno.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#ifdef MALLOC_STATS
#include <sys/tree.h>
#include <fcntl.h>
#endif
#include "thread_private.h"
#include <tib.h>
#if defined(__mips64__)
#define MALLOC_PAGESHIFT (14U)
#else
#define MALLOC_PAGESHIFT (PAGE_SHIFT)
#endif
#define MALLOC_MINSHIFT 4
#define MALLOC_MAXSHIFT (MALLOC_PAGESHIFT - 1)
#define MALLOC_PAGESIZE (1UL << MALLOC_PAGESHIFT)
#define MALLOC_MINSIZE (1UL << MALLOC_MINSHIFT)
#define MALLOC_PAGEMASK (MALLOC_PAGESIZE - 1)
#define MASK_POINTER(p) ((void *)(((uintptr_t)(p)) & ~MALLOC_PAGEMASK))
#define MALLOC_MAXCHUNK (1 << MALLOC_MAXSHIFT)
#define MALLOC_MAXCACHE 256
#define MALLOC_DELAYED_CHUNK_MASK 15
#define MALLOC_INITIAL_REGIONS 512
#define MALLOC_DEFAULT_CACHE 64
#define MALLOC_CHUNK_LISTS 4
#define CHUNK_CHECK_LENGTH 32
/*
* We move allocations between half a page and a whole page towards the end,
* subject to alignment constraints. This is the extra headroom we allow.
* Set to zero to be the most strict.
*/
#define MALLOC_LEEWAY 0
#define MALLOC_MOVE_COND(sz) ((sz) - mopts.malloc_guard < \
MALLOC_PAGESIZE - MALLOC_LEEWAY)
#define MALLOC_MOVE(p, sz) (((char *)(p)) + \
((MALLOC_PAGESIZE - MALLOC_LEEWAY - \
((sz) - mopts.malloc_guard)) & \
~(MALLOC_MINSIZE - 1)))
#define PAGEROUND(x) (((x) + (MALLOC_PAGEMASK)) & ~MALLOC_PAGEMASK)
/*
* What to use for Junk. This is the byte value we use to fill with
* when the 'J' option is enabled. Use SOME_JUNK right after alloc,
* and SOME_FREEJUNK right before free.
*/
#define SOME_JUNK 0xdb /* deadbeef */
#define SOME_FREEJUNK 0xdf /* dead, free */
#define MMAP(sz) mmap(NULL, (sz), PROT_READ | PROT_WRITE, \
MAP_ANON | MAP_PRIVATE, -1, 0)
#define MMAPA(a,sz) mmap((a), (sz), PROT_READ | PROT_WRITE, \
MAP_ANON | MAP_PRIVATE, -1, 0)
#define MQUERY(a, sz) mquery((a), (sz), PROT_READ | PROT_WRITE, \
MAP_ANON | MAP_PRIVATE | MAP_FIXED, -1, 0)
struct region_info {
void *p; /* page; low bits used to mark chunks */
uintptr_t size; /* size for pages, or chunk_info pointer */
#ifdef MALLOC_STATS
void *f; /* where allocated from */
#endif
};
LIST_HEAD(chunk_head, chunk_info);
struct dir_info {
u_int32_t canary1;
int active; /* status of malloc */
struct region_info *r; /* region slots */
size_t regions_total; /* number of region slots */
size_t regions_free; /* number of free slots */
/* lists of free chunk info structs */
struct chunk_head chunk_info_list[MALLOC_MAXSHIFT + 1];
/* lists of chunks with free slots */
struct chunk_head chunk_dir[MALLOC_MAXSHIFT + 1][MALLOC_CHUNK_LISTS];
size_t free_regions_size; /* free pages cached */
/* free pages cache */
struct region_info free_regions[MALLOC_MAXCACHE];
/* delayed free chunk slots */
void *delayed_chunks[MALLOC_DELAYED_CHUNK_MASK + 1];
size_t rbytesused; /* random bytes used */
char *func; /* current function */
int mutex;
u_char rbytes[32]; /* random bytes */
u_short chunk_start;
#ifdef MALLOC_STATS
size_t inserts;
size_t insert_collisions;
size_t finds;
size_t find_collisions;
size_t deletes;
size_t delete_moves;
size_t cheap_realloc_tries;
size_t cheap_reallocs;
size_t malloc_used; /* bytes allocated */
size_t malloc_guarded; /* bytes used for guards */
#define STATS_ADD(x,y) ((x) += (y))
#define STATS_SUB(x,y) ((x) -= (y))
#define STATS_INC(x) ((x)++)
#define STATS_ZERO(x) ((x) = 0)
#define STATS_SETF(x,y) ((x)->f = (y))
#else
#define STATS_ADD(x,y) /* nothing */
#define STATS_SUB(x,y) /* nothing */
#define STATS_INC(x) /* nothing */
#define STATS_ZERO(x) /* nothing */
#define STATS_SETF(x,y) /* nothing */
#endif /* MALLOC_STATS */
u_int32_t canary2;
};
#define DIR_INFO_RSZ ((sizeof(struct dir_info) + MALLOC_PAGEMASK) & \
~MALLOC_PAGEMASK)
/*
* This structure describes a page worth of chunks.
*
* How many bits per u_short in the bitmap
*/
#define MALLOC_BITS (NBBY * sizeof(u_short))
struct chunk_info {
LIST_ENTRY(chunk_info) entries;
void *page; /* pointer to the page */
u_int32_t canary;
u_short size; /* size of this page's chunks */
u_short shift; /* how far to shift for this size */
u_short free; /* how many free chunks */
u_short total; /* how many chunks */
u_short offset; /* requested size table offset */
/* which chunks are free */
u_short bits[1];
};
struct malloc_readonly {
struct dir_info *malloc_pool[_MALLOC_MUTEXES]; /* Main bookkeeping information */
int malloc_mt; /* multi-threaded mode? */
int malloc_freenow; /* Free quickly - disable chunk rnd */
int malloc_freeunmap; /* mprotect free pages PROT_NONE? */
int malloc_junk; /* junk fill? */
int malloc_realloc; /* always realloc? */
int malloc_xmalloc; /* xmalloc behaviour? */
int chunk_canaries; /* use canaries after chunks? */
int internal_funcs; /* use better recallocarray/freezero? */
u_int malloc_cache; /* free pages we cache */
size_t malloc_guard; /* use guard pages after allocations? */
#ifdef MALLOC_STATS
int malloc_stats; /* dump statistics at end */
#endif
u_int32_t malloc_canary; /* Matched against ones in malloc_pool */
};
/* This object is mapped PROT_READ after initialisation to prevent tampering */
static union {
struct malloc_readonly mopts;
u_char _pad[MALLOC_PAGESIZE];
} malloc_readonly __attribute__((aligned(MALLOC_PAGESIZE)));
#define mopts malloc_readonly.mopts
char *malloc_options; /* compile-time options */
static u_char getrbyte(struct dir_info *d);
static __dead void wrterror(struct dir_info *d, char *msg, ...)
__attribute__((__format__ (printf, 2, 3)));
static void fill_canary(char *ptr, size_t sz, size_t allocated);
#ifdef MALLOC_STATS
void malloc_dump(int, int, struct dir_info *);
PROTO_NORMAL(malloc_dump);
void malloc_gdump(int);
PROTO_NORMAL(malloc_gdump);
static void malloc_exit(void);
#define CALLER __builtin_return_address(0)
#else
#define CALLER NULL
#endif
/* low bits of r->p determine size: 0 means >= page size and r->size holding
* real size, otherwise low bits are a shift count, or 1 for malloc(0)
*/
#define REALSIZE(sz, r) \
(sz) = (uintptr_t)(r)->p & MALLOC_PAGEMASK, \
(sz) = ((sz) == 0 ? (r)->size : ((sz) == 1 ? 0 : (1 << ((sz)-1))))
static inline void
_MALLOC_LEAVE(struct dir_info *d)
{
if (mopts.malloc_mt) {
d->active--;
_MALLOC_UNLOCK(d->mutex);
}
}
static inline void
_MALLOC_ENTER(struct dir_info *d)
{
if (mopts.malloc_mt) {
_MALLOC_LOCK(d->mutex);
d->active++;
}
}
static inline size_t
hash(void *p)
{
size_t sum;
uintptr_t u;
u = (uintptr_t)p >> MALLOC_PAGESHIFT;
sum = u;
sum = (sum << 7) - sum + (u >> 16);
#ifdef __LP64__
sum = (sum << 7) - sum + (u >> 32);
sum = (sum << 7) - sum + (u >> 48);
#endif
return sum;
}
static inline
struct dir_info *getpool(void)
{
if (!mopts.malloc_mt)
return mopts.malloc_pool[0];
else
return mopts.malloc_pool[TIB_GET()->tib_tid &
(_MALLOC_MUTEXES - 1)];
}
static __dead void
wrterror(struct dir_info *d, char *msg, ...)
{
struct iovec iov[3];
char pidbuf[80];
char buf[80];
int saved_errno = errno;
va_list ap;
iov[0].iov_base = pidbuf;
snprintf(pidbuf, sizeof(pidbuf), "%s(%d) in %s(): ", __progname,
getpid(), (d != NULL && d->func) ? d->func : "unknown");
iov[0].iov_len = strlen(pidbuf);
iov[1].iov_base = buf;
va_start(ap, msg);
vsnprintf(buf, sizeof(buf), msg, ap);
va_end(ap);
iov[1].iov_len = strlen(buf);
iov[2].iov_base = "\n";
iov[2].iov_len = 1;
writev(STDERR_FILENO, iov, 3);
#ifdef MALLOC_STATS
if (mopts.malloc_stats)
malloc_gdump(STDERR_FILENO);
#endif /* MALLOC_STATS */
errno = saved_errno;
abort();
}
static void
rbytes_init(struct dir_info *d)
{
arc4random_buf(d->rbytes, sizeof(d->rbytes));
/* add 1 to account for using d->rbytes[0] */
d->rbytesused = 1 + d->rbytes[0] % (sizeof(d->rbytes) / 2);
}
static inline u_char
getrbyte(struct dir_info *d)
{
u_char x;
if (d->rbytesused >= sizeof(d->rbytes))
rbytes_init(d);
x = d->rbytes[d->rbytesused++];
return x;
}
/*
* Cache maintenance. We keep at most malloc_cache pages cached.
* If the cache is becoming full, unmap pages in the cache for real,
* and then add the region to the cache
* Opposed to the regular region data structure, the sizes in the
* cache are in MALLOC_PAGESIZE units.
*/
static void
unmap(struct dir_info *d, void *p, size_t sz, int clear)
{
size_t psz = sz >> MALLOC_PAGESHIFT;
size_t rsz, tounmap;
struct region_info *r;
u_int i, offset;
if (sz != PAGEROUND(sz))
wrterror(d, "munmap round");
rsz = mopts.malloc_cache - d->free_regions_size;
/*
* normally the cache holds recently freed regions, but if the region
* to unmap is larger than the cache size or we're clearing and the
* cache is full, just munmap
*/
if (psz > mopts.malloc_cache || (clear && rsz == 0)) {
i = munmap(p, sz);
if (i)
wrterror(d, "munmap %p", p);
STATS_SUB(d->malloc_used, sz);
return;
}
tounmap = 0;
if (psz > rsz)
tounmap = psz - rsz;
offset = getrbyte(d);
for (i = 0; tounmap > 0 && i < mopts.malloc_cache; i++) {
r = &d->free_regions[(i + offset) & (mopts.malloc_cache - 1)];
if (r->p != NULL) {
rsz = r->size << MALLOC_PAGESHIFT;
if (munmap(r->p, rsz))
wrterror(d, "munmap %p", r->p);
r->p = NULL;
if (tounmap > r->size)
tounmap -= r->size;
else
tounmap = 0;
d->free_regions_size -= r->size;
r->size = 0;
STATS_SUB(d->malloc_used, rsz);
}
}
if (tounmap > 0)
wrterror(d, "malloc cache underflow");
for (i = 0; i < mopts.malloc_cache; i++) {
r = &d->free_regions[(i + offset) & (mopts.malloc_cache - 1)];
if (r->p == NULL) {
if (clear)
memset(p, 0, sz - mopts.malloc_guard);
if (mopts.malloc_junk && !mopts.malloc_freeunmap) {
size_t amt = mopts.malloc_junk == 1 ?
MALLOC_MAXCHUNK : sz;
memset(p, SOME_FREEJUNK, amt);
}
if (mopts.malloc_freeunmap)
mprotect(p, sz, PROT_NONE);
r->p = p;
r->size = psz;
d->free_regions_size += psz;
break;
}
}
if (i == mopts.malloc_cache)
wrterror(d, "malloc free slot lost");
if (d->free_regions_size > mopts.malloc_cache)
wrterror(d, "malloc cache overflow");
}
static void
zapcacheregion(struct dir_info *d, void *p, size_t len)
{
u_int i;
struct region_info *r;
size_t rsz;
for (i = 0; i < mopts.malloc_cache; i++) {
r = &d->free_regions[i];
if (r->p >= p && r->p <= (void *)((char *)p + len)) {
rsz = r->size << MALLOC_PAGESHIFT;
if (munmap(r->p, rsz))
wrterror(d, "munmap %p", r->p);
r->p = NULL;
d->free_regions_size -= r->size;
r->size = 0;
STATS_SUB(d->malloc_used, rsz);
}
}
}
static void *
map(struct dir_info *d, void *hint, size_t sz, int zero_fill)
{
size_t psz = sz >> MALLOC_PAGESHIFT;
struct region_info *r, *big = NULL;
u_int i, offset;
void *p;
if (mopts.malloc_canary != (d->canary1 ^ (u_int32_t)(uintptr_t)d) ||
d->canary1 != ~d->canary2)
wrterror(d, "internal struct corrupt");
if (sz != PAGEROUND(sz))
wrterror(d, "map round");
if (!hint && psz > d->free_regions_size) {
_MALLOC_LEAVE(d);
p = MMAP(sz);
_MALLOC_ENTER(d);
if (p != MAP_FAILED)
STATS_ADD(d->malloc_used, sz);
/* zero fill not needed */
return p;
}
offset = getrbyte(d);
for (i = 0; i < mopts.malloc_cache; i++) {
r = &d->free_regions[(i + offset) & (mopts.malloc_cache - 1)];
if (r->p != NULL) {
if (hint && r->p != hint)
continue;
if (r->size == psz) {
p = r->p;
r->p = NULL;
r->size = 0;
d->free_regions_size -= psz;
if (mopts.malloc_freeunmap)
mprotect(p, sz, PROT_READ | PROT_WRITE);
if (zero_fill)
memset(p, 0, sz);
else if (mopts.malloc_junk == 2 &&
mopts.malloc_freeunmap)
memset(p, SOME_FREEJUNK, sz);
return p;
} else if (r->size > psz)
big = r;
}
}
if (big != NULL) {
r = big;
p = r->p;
r->p = (char *)r->p + (psz << MALLOC_PAGESHIFT);
if (mopts.malloc_freeunmap)
mprotect(p, sz, PROT_READ | PROT_WRITE);
r->size -= psz;
d->free_regions_size -= psz;
if (zero_fill)
memset(p, 0, sz);
else if (mopts.malloc_junk == 2 && mopts.malloc_freeunmap)
memset(p, SOME_FREEJUNK, sz);
return p;
}
if (hint)
return MAP_FAILED;
if (d->free_regions_size > mopts.malloc_cache)
wrterror(d, "malloc cache");
_MALLOC_LEAVE(d);
p = MMAP(sz);
_MALLOC_ENTER(d);
if (p != MAP_FAILED)
STATS_ADD(d->malloc_used, sz);
/* zero fill not needed */
return p;
}
static void
omalloc_parseopt(char opt)
{
switch (opt) {
case '>':
mopts.malloc_cache <<= 1;
if (mopts.malloc_cache > MALLOC_MAXCACHE)
mopts.malloc_cache = MALLOC_MAXCACHE;
break;
case '<':
mopts.malloc_cache >>= 1;
break;
case 'c':
mopts.chunk_canaries = 0;
break;
case 'C':
mopts.chunk_canaries = 1;
break;
#ifdef MALLOC_STATS
case 'd':
mopts.malloc_stats = 0;
break;
case 'D':
mopts.malloc_stats = 1;
break;
#endif /* MALLOC_STATS */
case 'f':
mopts.malloc_freenow = 0;
mopts.malloc_freeunmap = 0;
break;
case 'F':
mopts.malloc_freenow = 1;
mopts.malloc_freeunmap = 1;
break;
case 'g':
mopts.malloc_guard = 0;
break;
case 'G':
mopts.malloc_guard = MALLOC_PAGESIZE;
break;
case 'j':
if (mopts.malloc_junk > 0)
mopts.malloc_junk--;
break;
case 'J':
if (mopts.malloc_junk < 2)
mopts.malloc_junk++;
break;
case 'r':
mopts.malloc_realloc = 0;
break;
case 'R':
mopts.malloc_realloc = 1;
break;
case 'u':
mopts.malloc_freeunmap = 0;
break;
case 'U':
mopts.malloc_freeunmap = 1;
break;
case 'x':
mopts.malloc_xmalloc = 0;
break;
case 'X':
mopts.malloc_xmalloc = 1;
break;
default: {
static const char q[] = "malloc() warning: "
"unknown char in MALLOC_OPTIONS\n";
write(STDERR_FILENO, q, sizeof(q) - 1);
break;
}
}
}
static void
omalloc_init(void)
{
char *p, *q, b[64];
int i, j;
/*
* Default options
*/
mopts.malloc_junk = 1;
mopts.malloc_cache = MALLOC_DEFAULT_CACHE;
for (i = 0; i < 3; i++) {
switch (i) {
case 0:
j = readlink("/etc/malloc.conf", b, sizeof b - 1);
if (j <= 0)
continue;
b[j] = '\0';
p = b;
break;
case 1:
if (issetugid() == 0)
p = getenv("MALLOC_OPTIONS");
else
continue;
break;
case 2:
p = malloc_options;
break;
default:
p = NULL;
}
for (; p != NULL && *p != '\0'; p++) {
switch (*p) {
case 'S':
for (q = "CGJ"; *q != '\0'; q++)
omalloc_parseopt(*q);
mopts.malloc_cache = 0;
break;
case 's':
for (q = "cgj"; *q != '\0'; q++)
omalloc_parseopt(*q);
mopts.malloc_cache = MALLOC_DEFAULT_CACHE;
break;
default:
omalloc_parseopt(*p);
break;
}
}
}
#ifdef MALLOC_STATS
if (mopts.malloc_stats && (atexit(malloc_exit) == -1)) {
static const char q[] = "malloc() warning: atexit(2) failed."
" Will not be able to dump stats on exit\n";
write(STDERR_FILENO, q, sizeof(q) - 1);
}
#endif /* MALLOC_STATS */
while ((mopts.malloc_canary = arc4random()) == 0)
;
}
/*
* Initialize a dir_info, which should have been cleared by caller
*/
static void
omalloc_poolinit(struct dir_info **dp)
{
void *p;
size_t d_avail, regioninfo_size;
struct dir_info *d;
int i, j;
/*
* Allocate dir_info with a guard page on either side. Also
* randomise offset inside the page at which the dir_info
* lies (subject to alignment by 1 << MALLOC_MINSHIFT)
*/
if ((p = MMAP(DIR_INFO_RSZ + (MALLOC_PAGESIZE * 2))) == MAP_FAILED)
wrterror(NULL, "malloc init mmap failed");
mprotect(p, MALLOC_PAGESIZE, PROT_NONE);
mprotect((char *)p + MALLOC_PAGESIZE + DIR_INFO_RSZ,
MALLOC_PAGESIZE, PROT_NONE);
d_avail = (DIR_INFO_RSZ - sizeof(*d)) >> MALLOC_MINSHIFT;
d = (struct dir_info *)((char *)p + MALLOC_PAGESIZE +
(arc4random_uniform(d_avail) << MALLOC_MINSHIFT));
rbytes_init(d);
d->regions_free = d->regions_total = MALLOC_INITIAL_REGIONS;
regioninfo_size = d->regions_total * sizeof(struct region_info);
d->r = MMAP(regioninfo_size);
if (d->r == MAP_FAILED) {
d->regions_total = 0;
wrterror(NULL, "malloc init mmap failed");
}
for (i = 0; i <= MALLOC_MAXSHIFT; i++) {
LIST_INIT(&d->chunk_info_list[i]);
for (j = 0; j < MALLOC_CHUNK_LISTS; j++)
LIST_INIT(&d->chunk_dir[i][j]);
}
STATS_ADD(d->malloc_used, regioninfo_size);
d->canary1 = mopts.malloc_canary ^ (u_int32_t)(uintptr_t)d;
d->canary2 = ~d->canary1;
*dp = d;
}
static int
omalloc_grow(struct dir_info *d)
{
size_t newtotal;
size_t newsize;
size_t mask;
size_t i;
struct region_info *p;
if (d->regions_total > SIZE_MAX / sizeof(struct region_info) / 2 )
return 1;
newtotal = d->regions_total * 2;
newsize = newtotal * sizeof(struct region_info);
mask = newtotal - 1;
p = MMAP(newsize);
if (p == MAP_FAILED)
return 1;
STATS_ADD(d->malloc_used, newsize);
STATS_ZERO(d->inserts);
STATS_ZERO(d->insert_collisions);
for (i = 0; i < d->regions_total; i++) {
void *q = d->r[i].p;
if (q != NULL) {
size_t index = hash(q) & mask;
STATS_INC(d->inserts);
while (p[index].p != NULL) {
index = (index - 1) & mask;
STATS_INC(d->insert_collisions);
}
p[index] = d->r[i];
}
}
/* avoid pages containing meta info to end up in cache */
if (munmap(d->r, d->regions_total * sizeof(struct region_info)))
wrterror(d, "munmap %p", (void *)d->r);
else
STATS_SUB(d->malloc_used,
d->regions_total * sizeof(struct region_info));
d->regions_free = d->regions_free + d->regions_total;
d->regions_total = newtotal;
d->r = p;
return 0;
}
static struct chunk_info *
alloc_chunk_info(struct dir_info *d, int bits)
{
struct chunk_info *p;
size_t size, count;
if (bits == 0)
count = MALLOC_PAGESIZE / MALLOC_MINSIZE;
else
count = MALLOC_PAGESIZE >> bits;
size = howmany(count, MALLOC_BITS);
size = sizeof(struct chunk_info) + (size - 1) * sizeof(u_short);
if (mopts.chunk_canaries)
size += count * sizeof(u_short);
size = ALIGN(size);
if (LIST_EMPTY(&d->chunk_info_list[bits])) {
char *q;
int i;
q = MMAP(MALLOC_PAGESIZE);
if (q == MAP_FAILED)
return NULL;
STATS_ADD(d->malloc_used, MALLOC_PAGESIZE);
count = MALLOC_PAGESIZE / size;
for (i = 0; i < count; i++, q += size)
LIST_INSERT_HEAD(&d->chunk_info_list[bits],
(struct chunk_info *)q, entries);
}
p = LIST_FIRST(&d->chunk_info_list[bits]);
LIST_REMOVE(p, entries);
memset(p, 0, size);
p->canary = d->canary1;
return p;
}
/*
* The hashtable uses the assumption that p is never NULL. This holds since
* non-MAP_FIXED mappings with hint 0 start at BRKSIZ.
*/
static int
insert(struct dir_info *d, void *p, size_t sz, void *f)
{
size_t index;
size_t mask;
void *q;
if (d->regions_free * 4 < d->regions_total) {
if (omalloc_grow(d))
return 1;
}
mask = d->regions_total - 1;
index = hash(p) & mask;
q = d->r[index].p;
STATS_INC(d->inserts);
while (q != NULL) {
index = (index - 1) & mask;
q = d->r[index].p;
STATS_INC(d->insert_collisions);
}
d->r[index].p = p;
d->r[index].size = sz;
#ifdef MALLOC_STATS
d->r[index].f = f;
#endif
d->regions_free--;
return 0;
}
static struct region_info *
find(struct dir_info *d, void *p)
{
size_t index;
size_t mask = d->regions_total - 1;
void *q, *r;
if (mopts.malloc_canary != (d->canary1 ^ (u_int32_t)(uintptr_t)d) ||
d->canary1 != ~d->canary2)
wrterror(d, "internal struct corrupt");
p = MASK_POINTER(p);
index = hash(p) & mask;
r = d->r[index].p;
q = MASK_POINTER(r);
STATS_INC(d->finds);
while (q != p && r != NULL) {
index = (index - 1) & mask;
r = d->r[index].p;
q = MASK_POINTER(r);
STATS_INC(d->find_collisions);
}
return (q == p && r != NULL) ? &d->r[index] : NULL;
}
static void
delete(struct dir_info *d, struct region_info *ri)
{
/* algorithm R, Knuth Vol III section 6.4 */
size_t mask = d->regions_total - 1;
size_t i, j, r;
if (d->regions_total & (d->regions_total - 1))
wrterror(d, "regions_total not 2^x");
d->regions_free++;
STATS_INC(d->deletes);
i = ri - d->r;
for (;;) {
d->r[i].p = NULL;
d->r[i].size = 0;
j = i;
for (;;) {
i = (i - 1) & mask;
if (d->r[i].p == NULL)
return;
r = hash(d->r[i].p) & mask;
if ((i <= r && r < j) || (r < j && j < i) ||
(j < i && i <= r))
continue;
d->r[j] = d->r[i];
STATS_INC(d->delete_moves);
break;
}
}
}
/*
* Allocate a page of chunks
*/
static struct chunk_info *
omalloc_make_chunks(struct dir_info *d, int bits, int listnum)
{
struct chunk_info *bp;
void *pp;
int i, k;
/* Allocate a new bucket */
pp = map(d, NULL, MALLOC_PAGESIZE, 0);
if (pp == MAP_FAILED)
return NULL;
bp = alloc_chunk_info(d, bits);
if (bp == NULL) {
unmap(d, pp, MALLOC_PAGESIZE, 0);
return NULL;
}
/* memory protect the page allocated in the malloc(0) case */
if (bits == 0) {
bp->size = 0;
bp->shift = 1;
i = MALLOC_MINSIZE - 1;
while (i >>= 1)
bp->shift++;
bp->total = bp->free = MALLOC_PAGESIZE >> bp->shift;
bp->offset = 0xdead;
bp->page = pp;
k = mprotect(pp, MALLOC_PAGESIZE, PROT_NONE);
if (k < 0) {
unmap(d, pp, MALLOC_PAGESIZE, 0);
LIST_INSERT_HEAD(&d->chunk_info_list[0], bp, entries);
return NULL;
}
} else {
bp->size = 1U << bits;
bp->shift = bits;
bp->total = bp->free = MALLOC_PAGESIZE >> bits;
bp->offset = howmany(bp->total, MALLOC_BITS);
bp->page = pp;
}
/* set all valid bits in the bitmap */
k = bp->total;
i = 0;
/* Do a bunch at a time */
for (; (k - i) >= MALLOC_BITS; i += MALLOC_BITS)
bp->bits[i / MALLOC_BITS] = (u_short)~0U;
for (; i < k; i++)
bp->bits[i / MALLOC_BITS] |= (u_short)1U << (i % MALLOC_BITS);
LIST_INSERT_HEAD(&d->chunk_dir[bits][listnum], bp, entries);
bits++;
if ((uintptr_t)pp & bits)
wrterror(d, "pp & bits %p", pp);
insert(d, (void *)((uintptr_t)pp | bits), (uintptr_t)bp, NULL);
return bp;
}
static int
find_chunksize(size_t size)
{
int i, j;
/* Don't bother with anything less than this */
/* unless we have a malloc(0) requests */
if (size != 0 && size < MALLOC_MINSIZE)
size = MALLOC_MINSIZE;
/* Find the right bucket */
if (size == 0)
j = 0;
else {
j = MALLOC_MINSHIFT;
i = (size - 1) >> (MALLOC_MINSHIFT - 1);
while (i >>= 1)
j++;
}
return j;
}
/*
* Allocate a chunk
*/
static void *
malloc_bytes(struct dir_info *d, size_t size, void *f)
{
int i, j, listnum;
size_t k;
u_short u, *lp;
struct chunk_info *bp;
if (mopts.malloc_canary != (d->canary1 ^ (u_int32_t)(uintptr_t)d) ||
d->canary1 != ~d->canary2)
wrterror(d, "internal struct corrupt");
j = find_chunksize(size);
listnum = getrbyte(d) % MALLOC_CHUNK_LISTS;
/* If it's empty, make a page more of that size chunks */
if ((bp = LIST_FIRST(&d->chunk_dir[j][listnum])) == NULL) {
bp = omalloc_make_chunks(d, j, listnum);
if (bp == NULL)
return NULL;
}
if (bp->canary != d->canary1)
wrterror(d, "chunk info corrupted");
i = d->chunk_start;
if (bp->free > 1)
i += getrbyte(d);
if (i >= bp->total)
i &= bp->total - 1;
for (;;) {
for (;;) {
lp = &bp->bits[i / MALLOC_BITS];
if (!*lp) {
i += MALLOC_BITS;
i &= ~(MALLOC_BITS - 1);
if (i >= bp->total)
i = 0;
} else
break;
}
k = i % MALLOC_BITS;
u = 1 << k;
if (*lp & u)
break;
if (++i >= bp->total)
i = 0;
}
d->chunk_start += i + 1;
#ifdef MALLOC_STATS
if (i == 0) {
struct region_info *r = find(d, bp->page);
r->f = f;
}
#endif
*lp ^= u;
/* If there are no more free, remove from free-list */
if (!--bp->free)
LIST_REMOVE(bp, entries);
/* Adjust to the real offset of that chunk */
k += (lp - bp->bits) * MALLOC_BITS;
if (mopts.chunk_canaries && size > 0)
bp->bits[bp->offset + k] = size;
k <<= bp->shift;
if (bp->size > 0) {
if (mopts.malloc_junk == 2)
memset((char *)bp->page + k, SOME_JUNK, bp->size);
else if (mopts.chunk_canaries)
fill_canary((char *)bp->page + k, size, bp->size);
}
return ((char *)bp->page + k);
}
static void
fill_canary(char *ptr, size_t sz, size_t allocated)
{
size_t check_sz = allocated - sz;
if (check_sz > CHUNK_CHECK_LENGTH)
check_sz = CHUNK_CHECK_LENGTH;
memset(ptr + sz, SOME_JUNK, check_sz);
}
static void
validate_canary(struct dir_info *d, u_char *ptr, size_t sz, size_t allocated)
{
size_t check_sz = allocated - sz;
u_char *p, *q;
if (check_sz > CHUNK_CHECK_LENGTH)
check_sz = CHUNK_CHECK_LENGTH;
p = ptr + sz;
q = p + check_sz;
while (p < q) {
if (*p++ != SOME_JUNK) {
wrterror(d, "chunk canary corrupted %p %#tx@%#zx",
ptr, p - ptr - 1, sz);
}
}
}
static uint32_t
find_chunknum(struct dir_info *d, struct region_info *r, void *ptr, int check)
{
struct chunk_info *info;
uint32_t chunknum;
info = (struct chunk_info *)r->size;
if (info->canary != d->canary1)
wrterror(d, "chunk info corrupted");
/* Find the chunk number on the page */
chunknum = ((uintptr_t)ptr & MALLOC_PAGEMASK) >> info->shift;
if ((uintptr_t)ptr & ((1U << (info->shift)) - 1))
wrterror(d, "modified chunk-pointer %p", ptr);
if (info->bits[chunknum / MALLOC_BITS] &
(1U << (chunknum % MALLOC_BITS)))
wrterror(d, "chunk is already free %p", ptr);
if (check && info->size > 0) {
validate_canary(d, ptr, info->bits[info->offset + chunknum],
info->size);
}
return chunknum;
}
/*
* Free a chunk, and possibly the page it's on, if the page becomes empty.
*/
static void
free_bytes(struct dir_info *d, struct region_info *r, void *ptr)
{
struct chunk_head *mp;
struct chunk_info *info;
uint32_t chunknum;
int listnum;
info = (struct chunk_info *)r->size;
chunknum = find_chunknum(d, r, ptr, 0);
info->bits[chunknum / MALLOC_BITS] |= 1U << (chunknum % MALLOC_BITS);
info->free++;
if (info->free == 1) {
/* Page became non-full */
listnum = getrbyte(d) % MALLOC_CHUNK_LISTS;
if (info->size != 0)
mp = &d->chunk_dir[info->shift][listnum];
else
mp = &d->chunk_dir[0][listnum];
LIST_INSERT_HEAD(mp, info, entries);
return;
}
if (info->free != info->total)
return;
LIST_REMOVE(info, entries);
if (info->size == 0 && !mopts.malloc_freeunmap)
mprotect(info->page, MALLOC_PAGESIZE, PROT_READ | PROT_WRITE);
unmap(d, info->page, MALLOC_PAGESIZE, 0);
delete(d, r);
if (info->size != 0)
mp = &d->chunk_info_list[info->shift];
else
mp = &d->chunk_info_list[0];
LIST_INSERT_HEAD(mp, info, entries);
}
static void *
omalloc(struct dir_info *pool, size_t sz, int zero_fill, void *f)
{
void *p;
size_t psz;
if (sz > MALLOC_MAXCHUNK) {
if (sz >= SIZE_MAX - mopts.malloc_guard - MALLOC_PAGESIZE) {
errno = ENOMEM;
return NULL;
}
sz += mopts.malloc_guard;
psz = PAGEROUND(sz);
p = map(pool, NULL, psz, zero_fill);
if (p == MAP_FAILED) {
errno = ENOMEM;
return NULL;
}
if (insert(pool, p, sz, f)) {
unmap(pool, p, psz, 0);
errno = ENOMEM;
return NULL;
}
if (mopts.malloc_guard) {
if (mprotect((char *)p + psz - mopts.malloc_guard,
mopts.malloc_guard, PROT_NONE))
wrterror(pool, "mprotect");
STATS_ADD(pool->malloc_guarded, mopts.malloc_guard);
}
if (MALLOC_MOVE_COND(sz)) {
/* fill whole allocation */
if (mopts.malloc_junk == 2)
memset(p, SOME_JUNK, psz - mopts.malloc_guard);
/* shift towards the end */
p = MALLOC_MOVE(p, sz);
/* fill zeros if needed and overwritten above */
if (zero_fill && mopts.malloc_junk == 2)
memset(p, 0, sz - mopts.malloc_guard);
} else {
if (mopts.malloc_junk == 2) {
if (zero_fill)
memset((char *)p + sz - mopts.malloc_guard,
SOME_JUNK, psz - sz);
else
memset(p, SOME_JUNK,
psz - mopts.malloc_guard);
}
else if (mopts.chunk_canaries)
fill_canary(p, sz - mopts.malloc_guard,
psz - mopts.malloc_guard);
}
} else {
/* takes care of SOME_JUNK */
p = malloc_bytes(pool, sz, f);
if (zero_fill && p != NULL && sz > 0)
memset(p, 0, sz);
}
return p;
}
/*
* Common function for handling recursion. Only
* print the error message once, to avoid making the problem
* potentially worse.
*/
static void
malloc_recurse(struct dir_info *d)
{
static int noprint;
if (noprint == 0) {
noprint = 1;
wrterror(d, "recursive call");
}
d->active--;
_MALLOC_UNLOCK(d->mutex);
errno = EDEADLK;
}
void
_malloc_init(int from_rthreads)
{
int i, max;
struct dir_info *d;
_MALLOC_LOCK(0);
if (!from_rthreads && mopts.malloc_pool[0]) {
_MALLOC_UNLOCK(0);
return;
}
if (!mopts.malloc_canary)
omalloc_init();
max = from_rthreads ? _MALLOC_MUTEXES : 1;
if (((uintptr_t)&malloc_readonly & MALLOC_PAGEMASK) == 0)
mprotect(&malloc_readonly, sizeof(malloc_readonly),
PROT_READ | PROT_WRITE);
for (i = 0; i < max; i++) {
if (mopts.malloc_pool[i])
continue;
omalloc_poolinit(&d);
d->mutex = i;
mopts.malloc_pool[i] = d;
}
if (from_rthreads)
mopts.malloc_mt = 1;
else
mopts.internal_funcs = 1;
/*
* Options have been set and will never be reset.
* Prevent further tampering with them.
*/
if (((uintptr_t)&malloc_readonly & MALLOC_PAGEMASK) == 0)
mprotect(&malloc_readonly, sizeof(malloc_readonly), PROT_READ);
_MALLOC_UNLOCK(0);
}
DEF_STRONG(_malloc_init);
void *
malloc(size_t size)
{
void *r;
struct dir_info *d;
int saved_errno = errno;
d = getpool();
if (d == NULL) {
_malloc_init(0);
d = getpool();
}
_MALLOC_LOCK(d->mutex);
d->func = "malloc";
if (d->active++) {
malloc_recurse(d);
return NULL;
}
r = omalloc(d, size, 0, CALLER);
d->active--;
_MALLOC_UNLOCK(d->mutex);
if (r == NULL && mopts.malloc_xmalloc)
wrterror(d, "out of memory");
if (r != NULL)
errno = saved_errno;
return r;
}
/*DEF_STRONG(malloc);*/
static void
validate_junk(struct dir_info *pool, void *p)
{
struct region_info *r;
size_t byte, sz;
if (p == NULL)
return;
r = find(pool, p);
if (r == NULL)
wrterror(pool, "bogus pointer in validate_junk %p", p);
REALSIZE(sz, r);
if (sz > CHUNK_CHECK_LENGTH)
sz = CHUNK_CHECK_LENGTH;
for (byte = 0; byte < sz; byte++) {
if (((unsigned char *)p)[byte] != SOME_FREEJUNK)
wrterror(pool, "use after free %p", p);
}
}
static void
ofree(struct dir_info *argpool, void *p, int clear, int check, size_t argsz)
{
struct dir_info *pool;
struct region_info *r;
size_t sz;
int i;
pool = argpool;
r = find(pool, p);
if (r == NULL) {
if (mopts.malloc_mt) {
for (i = 0; i < _MALLOC_MUTEXES; i++) {
if (i == argpool->mutex)
continue;
pool->active--;
_MALLOC_UNLOCK(pool->mutex);
pool = mopts.malloc_pool[i];
_MALLOC_LOCK(pool->mutex);
pool->active++;
r = find(pool, p);
if (r != NULL)
break;
}
}
if (r == NULL)
wrterror(pool, "bogus pointer (double free?) %p", p);
}
REALSIZE(sz, r);
if (check) {
if (sz <= MALLOC_MAXCHUNK) {
if (mopts.chunk_canaries && sz > 0) {
struct chunk_info *info =
(struct chunk_info *)r->size;
uint32_t chunknum =
find_chunknum(pool, r, p, 0);
if (info->bits[info->offset + chunknum] <
argsz)
wrterror(pool, "recorded size %hu"
" < %zu",
info->bits[info->offset + chunknum],
argsz);
} else {
if (sz < argsz)
wrterror(pool, "chunk size %zu < %zu",
sz, argsz);
}
} else if (sz - mopts.malloc_guard < argsz) {
wrterror(pool, "recorded size %zu < %zu",
sz - mopts.malloc_guard, argsz);
}
}
if (sz > MALLOC_MAXCHUNK) {
if (!MALLOC_MOVE_COND(sz)) {
if (r->p != p)
wrterror(pool, "bogus pointer %p", p);
if (mopts.chunk_canaries)
validate_canary(pool, p,
sz - mopts.malloc_guard,
PAGEROUND(sz - mopts.malloc_guard));
} else {
/* shifted towards the end */
if (p != MALLOC_MOVE(r->p, sz))
wrterror(pool, "bogus moved pointer %p", p);
p = r->p;
}
if (mopts.malloc_guard) {
if (sz < mopts.malloc_guard)
wrterror(pool, "guard size");
if (!mopts.malloc_freeunmap) {
if (mprotect((char *)p + PAGEROUND(sz) -
mopts.malloc_guard, mopts.malloc_guard,
PROT_READ | PROT_WRITE))
wrterror(pool, "mprotect");
}
STATS_SUB(pool->malloc_guarded, mopts.malloc_guard);
}
unmap(pool, p, PAGEROUND(sz), clear);
delete(pool, r);
} else {
void *tmp;
int i;
/* Delayed free or canaries? Extra check */
if (!mopts.malloc_freenow || mopts.chunk_canaries)
find_chunknum(pool, r, p, mopts.chunk_canaries);
if (!clear && !mopts.malloc_freenow) {
if (mopts.malloc_junk && sz > 0)
memset(p, SOME_FREEJUNK, sz);
i = getrbyte(pool) & MALLOC_DELAYED_CHUNK_MASK;
tmp = p;
p = pool->delayed_chunks[i];
if (tmp == p)
wrterror(pool, "double free %p", tmp);
if (mopts.malloc_junk)
validate_junk(pool, p);
pool->delayed_chunks[i] = tmp;
} else {
if ((clear || mopts.malloc_junk) && sz > 0)
memset(p, clear ? 0 : SOME_FREEJUNK, sz);
}
if (p != NULL) {
r = find(pool, p);
if (r == NULL)
wrterror(pool,
"bogus pointer (double free?) %p", p);
free_bytes(pool, r, p);
}
}
if (argpool != pool) {
pool->active--;
_MALLOC_UNLOCK(pool->mutex);
_MALLOC_LOCK(argpool->mutex);
argpool->active++;
}
}
void
free(void *ptr)
{
struct dir_info *d;
int saved_errno = errno;
/* This is legal. */
if (ptr == NULL)
return;
d = getpool();
if (d == NULL)
wrterror(d, "free() called before allocation");
_MALLOC_LOCK(d->mutex);
d->func = "free";
if (d->active++) {
malloc_recurse(d);
return;
}
ofree(d, ptr, 0, 0, 0);
d->active--;
_MALLOC_UNLOCK(d->mutex);
errno = saved_errno;
}
/*DEF_STRONG(free);*/
static void
freezero_p(void *ptr, size_t sz)
{
explicit_bzero(ptr, sz);
free(ptr);
}
void
freezero(void *ptr, size_t sz)
{
struct dir_info *d;
int saved_errno = errno;
/* This is legal. */
if (ptr == NULL)
return;
if (!mopts.internal_funcs)
return freezero_p(ptr, sz);
d = getpool();
if (d == NULL)
wrterror(d, "freezero() called before allocation");
_MALLOC_LOCK(d->mutex);
d->func = "freezero";
if (d->active++) {
malloc_recurse(d);
return;
}
ofree(d, ptr, 1, 1, sz);
d->active--;
_MALLOC_UNLOCK(d->mutex);
errno = saved_errno;
}
DEF_WEAK(freezero);
static void *
orealloc(struct dir_info *argpool, void *p, size_t newsz, void *f)
{
struct dir_info *pool;
struct region_info *r;
struct chunk_info *info;
size_t oldsz, goldsz, gnewsz;
void *q, *ret;
int i;
uint32_t chunknum;
pool = argpool;
if (p == NULL)
return omalloc(pool, newsz, 0, f);
r = find(pool, p);
if (r == NULL) {
if (mopts.malloc_mt) {
for (i = 0; i < _MALLOC_MUTEXES; i++) {
if (i == argpool->mutex)
continue;
pool->active--;
_MALLOC_UNLOCK(pool->mutex);
pool = mopts.malloc_pool[i];
_MALLOC_LOCK(pool->mutex);
pool->active++;
r = find(pool, p);
if (r != NULL)
break;
}
}
if (r == NULL)
wrterror(pool, "bogus pointer (double free?) %p", p);
}
if (newsz >= SIZE_MAX - mopts.malloc_guard - MALLOC_PAGESIZE) {
errno = ENOMEM;
ret = NULL;
goto done;
}
REALSIZE(oldsz, r);
if (mopts.chunk_canaries && oldsz <= MALLOC_MAXCHUNK) {
chunknum = find_chunknum(pool, r, p, 0);
info = (struct chunk_info *)r->size;
}
goldsz = oldsz;
if (oldsz > MALLOC_MAXCHUNK) {
if (oldsz < mopts.malloc_guard)
wrterror(pool, "guard size");
oldsz -= mopts.malloc_guard;
}
gnewsz = newsz;
if (gnewsz > MALLOC_MAXCHUNK)
gnewsz += mopts.malloc_guard;
if (newsz > MALLOC_MAXCHUNK && oldsz > MALLOC_MAXCHUNK &&
!mopts.malloc_realloc) {
/* First case: from n pages sized allocation to m pages sized
allocation, m > n */
size_t roldsz = PAGEROUND(goldsz);
size_t rnewsz = PAGEROUND(gnewsz);
if (rnewsz > roldsz) {
/* try to extend existing region */
if (!mopts.malloc_guard) {
void *hint = (char *)r->p + roldsz;
size_t needed = rnewsz - roldsz;
STATS_INC(pool->cheap_realloc_tries);
q = map(pool, hint, needed, 0);
if (q == hint)
goto gotit;
zapcacheregion(pool, hint, needed);
q = MQUERY(hint, needed);
if (q == hint)
q = MMAPA(hint, needed);
else
q = MAP_FAILED;
if (q == hint) {
gotit:
STATS_ADD(pool->malloc_used, needed);
if (mopts.malloc_junk == 2)
memset(q, SOME_JUNK, needed);
r->size = gnewsz;
if (r->p != p) {
/* old pointer is moved */
memmove(r->p, p, oldsz);
p = r->p;
}
if (mopts.chunk_canaries)
fill_canary(p, newsz,
PAGEROUND(newsz));
STATS_SETF(r, f);
STATS_INC(pool->cheap_reallocs);
ret = p;
goto done;
} else if (q != MAP_FAILED) {
if (munmap(q, needed))
wrterror(pool, "munmap %p", q);
}
}
} else if (rnewsz < roldsz) {
/* shrink number of pages */
if (mopts.malloc_guard) {
if (mprotect((char *)r->p + roldsz -
mopts.malloc_guard, mopts.malloc_guard,
PROT_READ | PROT_WRITE))
wrterror(pool, "mprotect");
if (mprotect((char *)r->p + rnewsz -
mopts.malloc_guard, mopts.malloc_guard,
PROT_NONE))
wrterror(pool, "mprotect");
}
unmap(pool, (char *)r->p + rnewsz, roldsz - rnewsz, 0);
r->size = gnewsz;
if (MALLOC_MOVE_COND(gnewsz)) {
void *pp = MALLOC_MOVE(r->p, gnewsz);
memmove(pp, p, newsz);
p = pp;
} else if (mopts.chunk_canaries)
fill_canary(p, newsz, PAGEROUND(newsz));
STATS_SETF(r, f);
ret = p;
goto done;
} else {
/* number of pages remains the same */
void *pp = r->p;
r->size = gnewsz;
if (MALLOC_MOVE_COND(gnewsz))
pp = MALLOC_MOVE(r->p, gnewsz);
if (p != pp) {
memmove(pp, p, oldsz < newsz ? oldsz : newsz);
p = pp;
}
if (p == r->p) {
if (newsz > oldsz && mopts.malloc_junk == 2)
memset((char *)p + newsz, SOME_JUNK,
rnewsz - mopts.malloc_guard -
newsz);
if (mopts.chunk_canaries)
fill_canary(p, newsz, PAGEROUND(newsz));
}
STATS_SETF(r, f);
ret = p;
goto done;
}
}
if (oldsz <= MALLOC_MAXCHUNK && oldsz > 0 &&
newsz <= MALLOC_MAXCHUNK && newsz > 0 &&
1 << find_chunksize(newsz) == oldsz && !mopts.malloc_realloc) {
/* do not reallocate if new size fits good in existing chunk */
if (mopts.malloc_junk == 2)
memset((char *)p + newsz, SOME_JUNK, oldsz - newsz);
if (mopts.chunk_canaries) {
info->bits[info->offset + chunknum] = newsz;
fill_canary(p, newsz, info->size);
}
STATS_SETF(r, f);
ret = p;
} else if (newsz != oldsz || mopts.malloc_realloc) {
/* create new allocation */
q = omalloc(pool, newsz, 0, f);
if (q == NULL) {
ret = NULL;
goto done;
}
if (newsz != 0 && oldsz != 0)
memcpy(q, p, oldsz < newsz ? oldsz : newsz);
ofree(pool, p, 0, 0, 0);
ret = q;
} else {
/* oldsz == newsz */
if (newsz != 0)
wrterror(pool, "realloc internal inconsistency");
STATS_SETF(r, f);
ret = p;
}
done:
if (argpool != pool) {
pool->active--;
_MALLOC_UNLOCK(pool->mutex);
_MALLOC_LOCK(argpool->mutex);
argpool->active++;
}
return ret;
}
void *
realloc(void *ptr, size_t size)
{
struct dir_info *d;
void *r;
int saved_errno = errno;
d = getpool();
if (d == NULL) {
_malloc_init(0);
d = getpool();
}
_MALLOC_LOCK(d->mutex);
d->func = "realloc";
if (d->active++) {
malloc_recurse(d);
return NULL;
}
r = orealloc(d, ptr, size, CALLER);
d->active--;
_MALLOC_UNLOCK(d->mutex);
if (r == NULL && mopts.malloc_xmalloc)
wrterror(d, "out of memory");
if (r != NULL)
errno = saved_errno;
return r;
}
/*DEF_STRONG(realloc);*/
/*
* This is sqrt(SIZE_MAX+1), as s1*s2 <= SIZE_MAX
* if both s1 < MUL_NO_OVERFLOW and s2 < MUL_NO_OVERFLOW
*/
#define MUL_NO_OVERFLOW (1UL << (sizeof(size_t) * 4))
void *
calloc(size_t nmemb, size_t size)
{
struct dir_info *d;
void *r;
int saved_errno = errno;
d = getpool();
if (d == NULL) {
_malloc_init(0);
d = getpool();
}
_MALLOC_LOCK(d->mutex);
d->func = "calloc";
if ((nmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
nmemb > 0 && SIZE_MAX / nmemb < size) {
_MALLOC_UNLOCK(d->mutex);
if (mopts.malloc_xmalloc)
wrterror(d, "out of memory");
errno = ENOMEM;
return NULL;
}
if (d->active++) {
malloc_recurse(d);
return NULL;
}
size *= nmemb;
r = omalloc(d, size, 1, CALLER);
d->active--;
_MALLOC_UNLOCK(d->mutex);
if (r == NULL && mopts.malloc_xmalloc)
wrterror(d, "out of memory");
if (r != NULL)
errno = saved_errno;
return r;
}
/*DEF_STRONG(calloc);*/
static void *
orecallocarray(struct dir_info *argpool, void *p, size_t oldsize,
size_t newsize, void *f)
{
struct dir_info *pool;
struct region_info *r;
void *newptr;
size_t sz;
int i;
pool = argpool;
if (p == NULL)
return omalloc(pool, newsize, 1, f);
if (oldsize == newsize)
return p;
r = find(pool, p);
if (r == NULL) {
if (mopts.malloc_mt) {
for (i = 0; i < _MALLOC_MUTEXES; i++) {
if (i == argpool->mutex)
continue;
pool->active--;
_MALLOC_UNLOCK(pool->mutex);
pool = mopts.malloc_pool[i];
_MALLOC_LOCK(pool->mutex);
pool->active++;
r = find(pool, p);
if (r != NULL)
break;
}
}
if (r == NULL)
wrterror(pool, "bogus pointer (double free?) %p", p);
}
REALSIZE(sz, r);
if (sz <= MALLOC_MAXCHUNK) {
if (mopts.chunk_canaries && sz > 0) {
struct chunk_info *info = (struct chunk_info *)r->size;
uint32_t chunknum = find_chunknum(pool, r, p, 0);
if (info->bits[info->offset + chunknum] != oldsize)
wrterror(pool, "recorded old size %hu != %zu",
info->bits[info->offset + chunknum],
oldsize);
}
} else if (oldsize != sz - mopts.malloc_guard)
wrterror(pool, "recorded old size %zu != %zu",
sz - mopts.malloc_guard, oldsize);
newptr = omalloc(pool, newsize, 0, f);
if (newptr == NULL)
goto done;
if (newsize > oldsize) {
memcpy(newptr, p, oldsize);
memset((char *)newptr + oldsize, 0, newsize - oldsize);
} else
memcpy(newptr, p, newsize);
ofree(pool, p, 1, 0, 0);
done:
if (argpool != pool) {
pool->active--;
_MALLOC_UNLOCK(pool->mutex);
_MALLOC_LOCK(argpool->mutex);
argpool->active++;
}
return newptr;
}
static void *
recallocarray_p(void *ptr, size_t oldnmemb, size_t newnmemb, size_t size)
{
size_t oldsize, newsize;
void *newptr;
if (ptr == NULL)
return calloc(newnmemb, size);
if ((newnmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
newnmemb > 0 && SIZE_MAX / newnmemb < size) {
errno = ENOMEM;
return NULL;
}
newsize = newnmemb * size;
if ((oldnmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
oldnmemb > 0 && SIZE_MAX / oldnmemb < size) {
errno = EINVAL;
return NULL;
}
oldsize = oldnmemb * size;
/*
* Don't bother too much if we're shrinking just a bit,
* we do not shrink for series of small steps, oh well.
*/
if (newsize <= oldsize) {
size_t d = oldsize - newsize;
if (d < oldsize / 2 && d < MALLOC_PAGESIZE) {
memset((char *)ptr + newsize, 0, d);
return ptr;
}
}
newptr = malloc(newsize);
if (newptr == NULL)
return NULL;
if (newsize > oldsize) {
memcpy(newptr, ptr, oldsize);
memset((char *)newptr + oldsize, 0, newsize - oldsize);
} else
memcpy(newptr, ptr, newsize);
explicit_bzero(ptr, oldsize);
free(ptr);
return newptr;
}
void *
recallocarray(void *ptr, size_t oldnmemb, size_t newnmemb, size_t size)
{
struct dir_info *d;
size_t oldsize = 0, newsize;
void *r;
int saved_errno = errno;
if (!mopts.internal_funcs)
return recallocarray_p(ptr, oldnmemb, newnmemb, size);
d = getpool();
if (d == NULL) {
_malloc_init(0);
d = getpool();
}
_MALLOC_LOCK(d->mutex);
d->func = "recallocarray";
if ((newnmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
newnmemb > 0 && SIZE_MAX / newnmemb < size) {
_MALLOC_UNLOCK(d->mutex);
if (mopts.malloc_xmalloc)
wrterror(d, "out of memory");
errno = ENOMEM;
return NULL;
}
newsize = newnmemb * size;
if (ptr != NULL) {
if ((oldnmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
oldnmemb > 0 && SIZE_MAX / oldnmemb < size) {
_MALLOC_UNLOCK(d->mutex);
errno = EINVAL;
return NULL;
}
oldsize = oldnmemb * size;
}
if (d->active++) {
malloc_recurse(d);
return NULL;
}
r = orecallocarray(d, ptr, oldsize, newsize, CALLER);
d->active--;
_MALLOC_UNLOCK(d->mutex);
if (r == NULL && mopts.malloc_xmalloc)
wrterror(d, "out of memory");
if (r != NULL)
errno = saved_errno;
return r;
}
DEF_WEAK(recallocarray);
static void *
mapalign(struct dir_info *d, size_t alignment, size_t sz, int zero_fill)
{
char *p, *q;
if (alignment < MALLOC_PAGESIZE || ((alignment - 1) & alignment) != 0)
wrterror(d, "mapalign bad alignment");
if (sz != PAGEROUND(sz))
wrterror(d, "mapalign round");
/* Allocate sz + alignment bytes of memory, which must include a
* subrange of size bytes that is properly aligned. Unmap the
* other bytes, and then return that subrange.
*/
/* We need sz + alignment to fit into a size_t. */
if (alignment > SIZE_MAX - sz)
return MAP_FAILED;
p = map(d, NULL, sz + alignment, zero_fill);
if (p == MAP_FAILED)
return MAP_FAILED;
q = (char *)(((uintptr_t)p + alignment - 1) & ~(alignment - 1));
if (q != p) {
if (munmap(p, q - p))
wrterror(d, "munmap %p", p);
}
if (munmap(q + sz, alignment - (q - p)))
wrterror(d, "munmap %p", q + sz);
STATS_SUB(d->malloc_used, alignment);
return q;
}
static void *
omemalign(struct dir_info *pool, size_t alignment, size_t sz, int zero_fill,
void *f)
{
size_t psz;
void *p;
/* If between half a page and a page, avoid MALLOC_MOVE. */
if (sz > MALLOC_MAXCHUNK && sz < MALLOC_PAGESIZE)
sz = MALLOC_PAGESIZE;
if (alignment <= MALLOC_PAGESIZE) {
/*
* max(size, alignment) is enough to assure the requested
* alignment, since the allocator always allocates
* power-of-two blocks.
*/
if (sz < alignment)
sz = alignment;
return omalloc(pool, sz, zero_fill, f);
}
if (sz >= SIZE_MAX - mopts.malloc_guard - MALLOC_PAGESIZE) {
errno = ENOMEM;
return NULL;
}
sz += mopts.malloc_guard;
psz = PAGEROUND(sz);
p = mapalign(pool, alignment, psz, zero_fill);
if (p == NULL) {
errno = ENOMEM;
return NULL;
}
if (insert(pool, p, sz, f)) {
unmap(pool, p, psz, 0);
errno = ENOMEM;
return NULL;
}
if (mopts.malloc_guard) {
if (mprotect((char *)p + psz - mopts.malloc_guard,
mopts.malloc_guard, PROT_NONE))
wrterror(pool, "mprotect");
STATS_ADD(pool->malloc_guarded, mopts.malloc_guard);
}
if (mopts.malloc_junk == 2) {
if (zero_fill)
memset((char *)p + sz - mopts.malloc_guard,
SOME_JUNK, psz - sz);
else
memset(p, SOME_JUNK, psz - mopts.malloc_guard);
}
else if (mopts.chunk_canaries)
fill_canary(p, sz - mopts.malloc_guard,
psz - mopts.malloc_guard);
return p;
}
int
posix_memalign(void **memptr, size_t alignment, size_t size)
{
struct dir_info *d;
int res, saved_errno = errno;
void *r;
/* Make sure that alignment is a large enough power of 2. */
if (((alignment - 1) & alignment) != 0 || alignment < sizeof(void *))
return EINVAL;
d = getpool();
if (d == NULL) {
_malloc_init(0);
d = getpool();
}
_MALLOC_LOCK(d->mutex);
d->func = "posix_memalign";
if (d->active++) {
malloc_recurse(d);
goto err;
}
r = omemalign(d, alignment, size, 0, CALLER);
d->active--;
_MALLOC_UNLOCK(d->mutex);
if (r == NULL) {
if (mopts.malloc_xmalloc)
wrterror(d, "out of memory");
goto err;
}
errno = saved_errno;
*memptr = r;
return 0;
err:
res = errno;
errno = saved_errno;
return res;
}
/*DEF_STRONG(posix_memalign);*/
#ifdef MALLOC_STATS
struct malloc_leak {
void *f;
size_t total_size;
int count;
};
struct leaknode {
RBT_ENTRY(leaknode) entry;
struct malloc_leak d;
};
static inline int
leakcmp(const struct leaknode *e1, const struct leaknode *e2)
{
return e1->d.f < e2->d.f ? -1 : e1->d.f > e2->d.f;
}
static RBT_HEAD(leaktree, leaknode) leakhead;
RBT_PROTOTYPE(leaktree, leaknode, entry, leakcmp);
RBT_GENERATE(leaktree, leaknode, entry, leakcmp);
static void
putleakinfo(void *f, size_t sz, int cnt)
{
struct leaknode key, *p;
static struct leaknode *page;
static int used;
if (cnt == 0 || page == MAP_FAILED)
return;
key.d.f = f;
p = RBT_FIND(leaktree, &leakhead, &key);
if (p == NULL) {
if (page == NULL ||
used >= MALLOC_PAGESIZE / sizeof(struct leaknode)) {
page = MMAP(MALLOC_PAGESIZE);
if (page == MAP_FAILED)
return;
used = 0;
}
p = &page[used++];
p->d.f = f;
p->d.total_size = sz * cnt;
p->d.count = cnt;
RBT_INSERT(leaktree, &leakhead, p);
} else {
p->d.total_size += sz * cnt;
p->d.count += cnt;
}
}
static struct malloc_leak *malloc_leaks;
static void
writestr(int fd, const char *p)
{
write(fd, p, strlen(p));
}
static void
dump_leaks(int fd)
{
struct leaknode *p;
char buf[64];
int i = 0;
writestr(fd, "Leak report\n");
writestr(fd, " f sum # avg\n");
/* XXX only one page of summary */
if (malloc_leaks == NULL)
malloc_leaks = MMAP(MALLOC_PAGESIZE);
if (malloc_leaks != MAP_FAILED)
memset(malloc_leaks, 0, MALLOC_PAGESIZE);
RBT_FOREACH(p, leaktree, &leakhead) {
snprintf(buf, sizeof(buf), "%18p %7zu %6u %6zu\n", p->d.f,
p->d.total_size, p->d.count, p->d.total_size / p->d.count);
write(fd, buf, strlen(buf));
if (malloc_leaks == MAP_FAILED ||
i >= MALLOC_PAGESIZE / sizeof(struct malloc_leak))
continue;
malloc_leaks[i].f = p->d.f;
malloc_leaks[i].total_size = p->d.total_size;
malloc_leaks[i].count = p->d.count;
i++;
}
}
static void
dump_chunk(int fd, struct chunk_info *p, void *f, int fromfreelist)
{
char buf[64];
while (p != NULL) {
snprintf(buf, sizeof(buf), "chunk %18p %18p %4d %d/%d\n",
p->page, ((p->bits[0] & 1) ? NULL : f),
p->size, p->free, p->total);
write(fd, buf, strlen(buf));
if (!fromfreelist) {
if (p->bits[0] & 1)
putleakinfo(NULL, p->size, p->total - p->free);
else {
putleakinfo(f, p->size, 1);
putleakinfo(NULL, p->size,
p->total - p->free - 1);
}
break;
}
p = LIST_NEXT(p, entries);
if (p != NULL)
writestr(fd, " ");
}
}
static void
dump_free_chunk_info(int fd, struct dir_info *d)
{
char buf[64];
int i, j, count;
struct chunk_info *p;
writestr(fd, "Free chunk structs:\n");
for (i = 0; i <= MALLOC_MAXSHIFT; i++) {
count = 0;
LIST_FOREACH(p, &d->chunk_info_list[i], entries)
count++;
for (j = 0; j < MALLOC_CHUNK_LISTS; j++) {
p = LIST_FIRST(&d->chunk_dir[i][j]);
if (p == NULL && count == 0)
continue;
snprintf(buf, sizeof(buf), "%2d) %3d ", i, count);
write(fd, buf, strlen(buf));
if (p != NULL)
dump_chunk(fd, p, NULL, 1);
else
write(fd, "\n", 1);
}
}
}
static void
dump_free_page_info(int fd, struct dir_info *d)
{
char buf[64];
int i;
snprintf(buf, sizeof(buf), "Free pages cached: %zu\n",
d->free_regions_size);
write(fd, buf, strlen(buf));
for (i = 0; i < mopts.malloc_cache; i++) {
if (d->free_regions[i].p != NULL) {
snprintf(buf, sizeof(buf), "%2d) ", i);
write(fd, buf, strlen(buf));
snprintf(buf, sizeof(buf), "free at %p: %zu\n",
d->free_regions[i].p, d->free_regions[i].size);
write(fd, buf, strlen(buf));
}
}
}
static void
malloc_dump1(int fd, int poolno, struct dir_info *d)
{
char buf[100];
size_t i, realsize;
snprintf(buf, sizeof(buf), "Malloc dir of %s pool %d at %p\n", __progname, poolno, d);
write(fd, buf, strlen(buf));
if (d == NULL)
return;
snprintf(buf, sizeof(buf), "Region slots free %zu/%zu\n",
d->regions_free, d->regions_total);
write(fd, buf, strlen(buf));
snprintf(buf, sizeof(buf), "Finds %zu/%zu\n", d->finds,
d->find_collisions);
write(fd, buf, strlen(buf));
snprintf(buf, sizeof(buf), "Inserts %zu/%zu\n", d->inserts,
d->insert_collisions);
write(fd, buf, strlen(buf));
snprintf(buf, sizeof(buf), "Deletes %zu/%zu\n", d->deletes,
d->delete_moves);
write(fd, buf, strlen(buf));
snprintf(buf, sizeof(buf), "Cheap reallocs %zu/%zu\n",
d->cheap_reallocs, d->cheap_realloc_tries);
write(fd, buf, strlen(buf));
snprintf(buf, sizeof(buf), "In use %zu\n", d->malloc_used);
write(fd, buf, strlen(buf));
snprintf(buf, sizeof(buf), "Guarded %zu\n", d->malloc_guarded);
write(fd, buf, strlen(buf));
dump_free_chunk_info(fd, d);
dump_free_page_info(fd, d);
writestr(fd,
"slot) hash d type page f size [free/n]\n");
for (i = 0; i < d->regions_total; i++) {
if (d->r[i].p != NULL) {
size_t h = hash(d->r[i].p) &
(d->regions_total - 1);
snprintf(buf, sizeof(buf), "%4zx) #%4zx %zd ",
i, h, h - i);
write(fd, buf, strlen(buf));
REALSIZE(realsize, &d->r[i]);
if (realsize > MALLOC_MAXCHUNK) {
putleakinfo(d->r[i].f, realsize, 1);
snprintf(buf, sizeof(buf),
"pages %18p %18p %zu\n", d->r[i].p,
d->r[i].f, realsize);
write(fd, buf, strlen(buf));
} else
dump_chunk(fd,
(struct chunk_info *)d->r[i].size,
d->r[i].f, 0);
}
}
dump_leaks(fd);
write(fd, "\n", 1);
}
void
malloc_dump(int fd, int poolno, struct dir_info *pool)
{
int i;
void *p;
struct region_info *r;
int saved_errno = errno;
if (pool == NULL)
return;
for (i = 0; i < MALLOC_DELAYED_CHUNK_MASK + 1; i++) {
p = pool->delayed_chunks[i];
if (p == NULL)
continue;
r = find(pool, p);
if (r == NULL)
wrterror(pool, "bogus pointer in malloc_dump %p", p);
free_bytes(pool, r, p);
pool->delayed_chunks[i] = NULL;
}
/* XXX leak when run multiple times */
RBT_INIT(leaktree, &leakhead);
malloc_dump1(fd, poolno, pool);
errno = saved_errno;
}
DEF_WEAK(malloc_dump);
void
malloc_gdump(int fd)
{
int i;
int saved_errno = errno;
for (i = 0; i < _MALLOC_MUTEXES; i++)
malloc_dump(fd, i, mopts.malloc_pool[i]);
errno = saved_errno;
}
DEF_WEAK(malloc_gdump);
static void
malloc_exit(void)
{
static const char q[] = "malloc() warning: Couldn't dump stats\n";
int save_errno = errno, fd, i;
char buf[100];
fd = open("malloc.out", O_RDWR|O_APPEND);
if (fd != -1) {
snprintf(buf, sizeof(buf), "******** Start dump %s *******\n",
__progname);
write(fd, buf, strlen(buf));
snprintf(buf, sizeof(buf),
"MT=%d I=%d F=%d U=%d J=%d R=%d X=%d C=%d cache=%u G=%zu\n",
mopts.malloc_mt, mopts.internal_funcs,
mopts.malloc_freenow,
mopts.malloc_freeunmap, mopts.malloc_junk,
mopts.malloc_realloc, mopts.malloc_xmalloc,
mopts.chunk_canaries, mopts.malloc_cache,
mopts.malloc_guard);
write(fd, buf, strlen(buf));
for (i = 0; i < _MALLOC_MUTEXES; i++)
malloc_dump(fd, i, mopts.malloc_pool[i]);
snprintf(buf, sizeof(buf), "******** End dump %s *******\n",
__progname);
write(fd, buf, strlen(buf));
close(fd);
} else
write(STDERR_FILENO, q, sizeof(q) - 1);
errno = save_errno;
}
#endif /* MALLOC_STATS */